Hilfe
  • Satz von Vieta: Die quadratische Gleichung in Normalform

    x2 + px + q = 0

    besitzt die beiden Lösungen x1 und x2, falls
    • x1 + x2 = −p und
    • x1·x2 = q
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Die Aufgaben aus diesem Level gehen über den Lehrplan hinaus oder sind Zusatzaufgaben.

Löse durch Koeffizientenvergleich (Satz von Vieta).

  • x
    2
    6x
    +
    8
    =
    0
    Die Aufgabe kann nur schrittweise gelöst werden. Aktiviere die Zwischenschritte!
    Schritt 1/2
    Das Produkt der gesuchten Zahlen muss den Wert und ihre Summe muss den Wert haben.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Quadratische Gleichungen
Lernvideo

Quadratische Gleichungen

Kanal: Mathegym

Wie identifiziert man die Koeffizienten a, b und c in einer quadratischen Gleichung?
#241
Merke:
  • a ist der x² zugehörige Koeffizient (d.h. die Zahl, die vor x² steht)
  • b ist der x zugehörige Koeffizient (d.h. die Zahl, die vor x steht). Kommt x in der Gleichung nicht vor, so ist b = 0.
  • c ist die Konstante (d.h. c steht solo, ohne x oder x²). Kommt keine Konstante in der Gleichung vor, so ist c = 0.
Wie berechnet man die Diskriminante einer quadratischen Gleichung und was sagt sie aus?
#843

Um zu ermitteln, ob die quadratische Gleichung ax² + bx + c = 0 überhaupt gelöst werden kann und ob es - falls ja - eine oder zwei Lösungen gibt, berechnet man am besten zuerst die sog. Diskriminante:

D = b² − 4ac

  • Gilt D < 0, so ist die quadratische Gleichung unlösbar.
  • Gilt D = 0, so hat die quadratische Gleichung genau eine Lösung.
  • Gilt D > 0, so hat die quadratische Gleichung zwei Lösungen.
Was ist die Mitternachtsformel und wie bestimmt man die Anzahl der Lösungen?
#243

Die Lösungen der quadratische Gleichung ax² + bx + c = 0 könnnen, falls vorhanden, immer mit der sog. Mitternachtsformel (MNF) bestimmt werden. Zunächst berechnet man die sog. Diskriminante:

D = b² − 4ac

Je nachdem, ob D positiv, null oder negativ ist, gibt es genau zwei, genau eine oder gar keine Lösung. Abgesehen vom letzten Fall heißt/heißen die Lösung(en):

x1,2 = (−b ± √D) : 2a

Beispiel 1
Löse die Gleichung 
2x
2
5x
7
=
0
.
Beispiel 2
Löse die Gleichung:
1
3
 
x
x
2
+
7
=
5
+
x
Welche zwei Spezialfälle quadratischer Gleichungen ermöglichen eine Lösung ohne die allgemeine Lösungsformel und wie löst man diese?
#242
Quadratische Gleichungen können leicht gelöst werden, wenn
  • x nur im Quadrat vorkommt (z.B. -2x² + 3 = 2)
    → nach x² auflösen, zuletzt Wurzel ziehen; beachte "±" !
  • keine (additiven) Konstanten auftreten (z.B. -2x² = 3x)
    → alle x-Terme auf eine Seite und x ausklammern
Beispiel
Löse jeweils so einfach wie möglich (ohne Lösungsformel):
1
    
2x
2
+
5
=
0
2
    
1
3
·
x
2
2
3
=
0
3
    
3x
2
+
2x
=
0
Wie kann eine quadratische Gleichung eine oder zwei Lösungen haben? Gib jeweils ein Beispiel und begründe dies.
#433
Ein Produkt ist genau dann 0, wenn mindestens ein Faktor 0 ist. Daher hat eine quadratische Gleichung der Form
  • (x − 1)⋅(x + 2) = 0 die zwei Lösungen 1 und -2
  • (x − 3)² = 0 nur die Lösung 3
Beispiel
Gib eine quadratische Gleichungen an, die als einzige Lösung x = -5 hat.
Was besagt der Satz von Vieta für quadratische Gleichungen?
#476
Satz von Vieta: Die quadratische Gleichung in Normalform

x2 + px + q = 0

besitzt die beiden Lösungen x1 und x2, falls
  • x1 + x2 = −p und
  • x1·x2 = q
Beispiel
Löse mit Hilfe des Satzes von Vieta:
x
2
7x
+
6
=
0