Hilfe
  • Allgemeine Hilfe zu diesem Level
    Ähnliche Dreiecke stimmen in allen Winkelmaßen und Seitenverhältnissen überein. Eine Zeichnung kann helfen.
  • Hilfe zum Thema
    Zwei Figuren sind ähnlich, wenn sie in den jeweils entsprechenden Winkeln und allen Seitenverhältnissen entsprechender Seiten übereinstimmen. Dieses Verhältnis wird als Streckungsfaktor (oder Ähnlichkeitsfaktor) k bezeichnet; k drückt aus, wie lang die Seiten in Figur 2 im Vergleich zu den entsprechenden Seiten in Figur 1 sind. Z.B. bedeutet k=0,5, dass Figur 2 längenmäßig halb so groß wie Figur 1 ist.

    • Kennt man k, so kann man zu jeder Seitenlänge in Figur 1 durch Multiplikation mit k die entsprechende Seitenlänge in Figur 2 angeben.
    • Kennt man die Längen von zwei sich entsprechenden Seiten in Figur 1 und Figur 2, so kann man k durch Division der Seitenlängen "Figur 2 : Figur 1" bestimmen.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Überprüfe, ob die Dreiecke ABC und A'B'C' ähnlich zueinander sind. Fülle dann den Lückentext aus.
  • A(0|1), B(2|1), C(0|3);
    A'(2|3), B'(4|3), C'(2|5);
    Die Dreiecke ABC und 
    A'B'C'
     sind weil ABC wurde zum Bilddreieck 
    A'B'C'
    .
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Was sind die Eigenschaften ähnlicher Dreiecke?
#708
Zwei Figuren sind ähnlich, wenn sie in den jeweils entsprechenden Winkeln und allen Seitenverhältnissen entsprechender Seiten übereinstimmen. Dieses Verhältnis wird als Streckungsfaktor (oder Ähnlichkeitsfaktor) k bezeichnet; k drückt aus, wie lang die Seiten in Figur 2 im Vergleich zu den entsprechenden Seiten in Figur 1 sind. Z.B. bedeutet k=0,5, dass Figur 2 längenmäßig halb so groß wie Figur 1 ist.

  • Kennt man k, so kann man zu jeder Seitenlänge in Figur 1 durch Multiplikation mit k die entsprechende Seitenlänge in Figur 2 angeben.
  • Kennt man die Längen von zwei sich entsprechenden Seiten in Figur 1 und Figur 2, so kann man k durch Division der Seitenlängen "Figur 2 : Figur 1" bestimmen.
Beispiel
Die beiden Figuren sind ähnlich. Berechne die fehlenden Seitenlängen und gib die fehlenden Winkel an (Abbildungen nicht maßstabsgetreu).
graphik
a
=
?
β
=
?
γ
=
?
b'
=
?
α
 
'
=
?
β
 
'
=
?