Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Ist eine Ebene durch drei Punkte A, B, C eindeutig definiert (d.h. die Punkte dürfen nicht alle auf einer Geraden liegen), so kann man z.B. A als Aufpunkt, den Vektor von A nach B als ersten und den Vektor von A nach C als zweiten Richtungsvektor für ihre Gleichung in Parameterform verwenden.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 1
  • Gib für die Ebene E, die durch die drei Punkte A, B und C geht, eine Gleichung in Parameterform an.
  • A(-2|3|5), B(1|-4|-1) und C(1|1|-7)
    E
    :
    X
    =
    5
    +
    λ
    ·
    3
    7
    +
    μ
    ·
    3
    2
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie bestimmt man die Parameterform einer Ebene durch drei Punkte A, B und C?
#604
Ist eine Ebene durch drei Punkte A, B, C eindeutig definiert (d.h. die Punkte dürfen nicht alle auf einer Geraden liegen), so kann man z.B. A als Aufpunkt, den Vektor von A nach B als ersten und den Vektor von A nach C als zweiten Richtungsvektor für ihre Gleichung in Parameterform verwenden.
Beispiel
Gib für die Ebene E, die durch die drei Punkte A(2|0|0), B(1,5|2|0,5) und C(0|0|-2) geht, eine Gleichung in Parameterform an.
Wie prüft man, ob ein Punkt P auf einer Ebene E in Parameterform liegt?
#606
Um zu prüfen, ob der Punkt P auf der Ebene E liegt, setzt man die Koordinaten von P in die Gleichung von E (Parameterform) ein. Sofern sich beide Parameter eindeutig bestimmen lassen, gilt P ∈ E.
Beispiel
Gegeben ist die Ebene E
:
X
=
4
3
4
+
λ
·
1
2
3
+
μ
·
2
1
1
 
.
Prüfe, ob der Punkt P(-1|3|5) auf E liegt.
Wie legen zwei Geraden in Parameterform eine Ebene fest und wie bestimmt man deren Parameterform?
#605
Zwei Geraden g und h legen eine Ebene fest, wenn sie
  • sich in einem Punkt schneiden:
In diesem Fall kann man den Aufpunkt von g oder h oder den Schnittpunkt als Aufpunkt der Ebene verwenden sowie die beiden Richtungsvektoren der Geraden als Richtungsvektoren der Ebene.
  • echt parallel sind (d.h. parallel und nicht identisch):
In diesem Fall kann man den Aufpunkt von g oder h als Aufpunkt der Ebene verwenden. Da die Richtungsvektoren beider Geraden linear abhängig sind, verwendet man den Verbindungsvektor zwischen den Aufpunkten beider Geraden als zweiten Richtungsvektor der Ebene.
Beispiel
g
:
X
=
3
5
4
+
λ
·
1
0
2
 
     
 
h
:
X
=
2
5
6
+
λ
·
5
3
3
 
     
 
i
:
X
=
7
9
0
+
λ
·
3
0
6
Die Ebene E enthält die Geraden g und h, die Ebene F die Geraden g und i. Gib für E und F jeweils eine Gleichung in Parameterform an.
Welche besonderen Lagebeziehungen zwischen einer Ebene und dem Koordinatensystem sind möglich und welche Rolle spielen dabei der Stützvektor und die Richtungsvektoren?
#607
Eine "besondere Lage zum Koordinatensystem" hat eine Ebene E z.B. dann, wenn
  • sie durch den Ursprung geht und/oder
  • sie parallel zu einer Koordinatenebene ist und/oder
  • sie parallel zu einer Achse verläuft.
Parallele Lagebeziehungen ergeben sich allein aus den beiden Richtungsvektoren der Ebene, für die Frage "echt oder unecht parallel" (UNECHT z.B. dann, wenn E die x1-Achse ENTHÄLT) muss auch der Ortsvektor, der zum Aufpunkt führt (Stützvektor) in die Betrachtung mit einbezogen werden.
Beispiel
Welche besondere Lage im Koordinatensystem haben folgende Ebenen:
E
:
X
=
2
3
4
+
λ
·
0
1
4
+
μ
·
0
3
0
G
:
X
=
λ
·
1
1
1
+
μ
·
0
3
2
I
:
X
=
λ
·
0
1
1
+
μ
·
1
0
0
 
        
 
F
:
X
=
1
1
0
+
λ
·
2
0
0
+
μ
·
0
0
1
H
:
X
=
0
0
5
+
λ
·
2
3
4
+
μ
·
0
0
1
 
 
 
Für Vektoren ungleich dem Nullvektor lässt sich lineare Abhängigkeit/Unabhängigkeit immer anschaulich interpretieren:
  • Zwei Vektoren sind genau dann linear abhängig, wenn sie parallel zueinander sind.
  • Drei Vektoren im ℝ³ sind genau dann linear abhängig, wenn sie parallel zu einer Ebene sind. Letzteres ist erfüllt, wenn mindestens zwei der Vektoren parallel zueinander sind.
Wann sind n Vektoren im ℝ³ linear abhängig?
#1309

Eine Menge von \( n \) Vektoren \(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \in \mathbb{R}^3\) ist linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination der anderen dargestellt werden kann. Anderfalls nennt man sie linear unabhängig.

Folgerung: Lineare Unabhängigkeit liegt genau dann vor, wenn sich der Nullvektor nur trivial als Linearkombination dieser n Vektoren darstellen lässt, d.h. die Darstellung

\[ \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_n \vec{v}_n = \vec{0} \]

ist nur möglich mit \( \lambda_1=\lambda_2=\dots=\lambda_n=0\).