Hilfe
  • Binomialkoeffizienten

    Der Binomialkoeffizient gibt in Bernoulli-Ketten die Anzahl der Pfade an, bei n Durchführungen genau r Treffer zu erhalten.
    Dies wird bei der Berechnung von Wahrscheinlichkeiten bei Bernoulli-Ketten benötigt.

    Schreibweise:

    • wie ein Vektor (n über r in runden Klammern)
    • Gelesen: "n über r"
    Berechnung: mithilfe der nCr-Taste deines Taschenrechners, also zuerst n eingeben, dann nCr-Taste drücken, dann r eingeben. Ohne Taschenrechner:
    • Zähler: n · (n-1) · (n-2) · ... (n-r+1) [insgesamt r Faktoren]
    • Nenner: 1 · 2 · 3 · ... · r [ebenfalls r Faktoren]
    • Kürzen (bis der Nenner 1 ist!), dann verbliebenen Zähler berechnen.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Berechne den Binomialkoeffizienten.

  • 8
    3
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Was ist der Binomialkoeffizient und wie berechnet man ihn?
#701

Binomialkoeffizienten

Der Binomialkoeffizient gibt in Bernoulli-Ketten die Anzahl der Pfade an, bei n Durchführungen genau r Treffer zu erhalten.
Dies wird bei der Berechnung von Wahrscheinlichkeiten bei Bernoulli-Ketten benötigt.

Schreibweise:

  • wie ein Vektor (n über r in runden Klammern)
  • Gelesen: "n über r"
Berechnung: mithilfe der nCr-Taste deines Taschenrechners, also zuerst n eingeben, dann nCr-Taste drücken, dann r eingeben. Ohne Taschenrechner:
  • Zähler: n · (n-1) · (n-2) · ... (n-r+1) [insgesamt r Faktoren]
  • Nenner: 1 · 2 · 3 · ... · r [ebenfalls r Faktoren]
  • Kürzen (bis der Nenner 1 ist!), dann verbliebenen Zähler berechnen.
Beispiel
49
7
=
?
Was ist das Urnenmodell in der Stochastik und wie wird es verwendet?
#1217
Im Urnenmodell wird ein Behälter (Urne) benutzt, um Laplace-Experimente zu modellieren. Dazu wird die Urne mit einer bestimmten Anzahl Kugeln gefüllt, die bis auf eine Eigenschaft (z.B. Farbe) nicht unterscheidbar sind. Beim zufälligen Ziehen einer Kugel aus der Urne sollen alle Kugeln dieselbe Auswahlwahrscheinlichkeit haben. Es gibt die Unterscheidungen "Ziehen mit/ohne Zurücklegen" und "mit/ohne Beachtung der Reihenfolge" der gezogenen Kugeln.
Beispiel 1
Aus einer Pralinenschachtel mit 20 unterschiedlichen Pralinen werden mit einem Griff acht Pralinen entnommen.
a) Gib ein passendes Urnenmodell an!
b) Auf wie viele verschiedene Arten ist dies möglich?
Beispiel 2
In einer vollen Schachtel Pralinen befinden sich zwölf Marzipan-Pralinen und acht Schoko-Pralinen. Es werden mit einem Griff acht Pralinen entnommen. Wie groß ist die Wahrscheinlichkeit, dass sich unter den entnommenen Pralinen genau drei Marzipan-Pralinen befinden?