Hilfe
  • Der Satz vom Nullprodukt sagt:

    Ein Produkt von zwei Zahlen ist genau dann null, wenn (mindetens) ein Faktor null ist.

    In formalerer Schreibweise: Aus a·b = 0 folgt a = 0 und/oder b = 0 und umgekehrt.

    Vielfachheit von Lösungen:

    Die Gleichung (x − 1)2 = 0 hat nur die Lösung x = 1, da der Faktor (x − 1) aber zwei Mal auftritt, sagt man, dass x = 1 eine zweifache Lösung ist.

    Entsprechend gibt es einfache, dreifache usw. Lösungen.

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme alle Lösungen. Gib jeweils ihre Vielfachheit daneben an. Schreibe in alle übrige Felder "!".

  • x
    +
    2
    ·
    x
    2
    =
    0
    x
    1
    =
     
    mit
     
    Vielfachheit
     
    x
    2
    =
     
    mit
     
    Vielfachheit
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Ganzrationale Funktionen (Teil 2)
Lernvideo

Ganzrationale Funktionen (Teil 2)

Kanal: Mathegym
Faktorisierung  von Polynomen (Teil 1)
Lernvideo

Faktorisierung von Polynomen (Teil 1)

Kanal: Mathegym

Was besagt der Satz vom Nullprodukt und was sind Vielfachheiten von Lösungen?
#693
Der Satz vom Nullprodukt sagt:

Ein Produkt von zwei Zahlen ist genau dann null, wenn (mindetens) ein Faktor null ist.

In formalerer Schreibweise: Aus a·b = 0 folgt a = 0 und/oder b = 0 und umgekehrt.

Vielfachheit von Lösungen:

Die Gleichung (x − 1)2 = 0 hat nur die Lösung x = 1, da der Faktor (x − 1) aber zwei Mal auftritt, sagt man, dass x = 1 eine zweifache Lösung ist.

Entsprechend gibt es einfache, dreifache usw. Lösungen.

Beispiel
Löse die Gleichung.
x
1
·
3x
5
2
=
0
Was versteht man unter der Vielfachheit einer Nullstelle?
#315
Jede Nullstelle einer ganzrationalen Funktion besitzt eine bestimmte Vielfachheit.

Ist a eine Nullstelle, so kann f(x) als Produkt mit Faktor x − a geschrieben werden. Kommt x − a genau n mal als Faktor vor (also "hoch n"), so nennt man a eine n-fache Nullstelle.

Beispiel
Bestimme jeweils die Nullstellen und ihre Vielfachheiten:
f(x)
=
x
1
2
·
x
+
2
g(x)
=
x
2
+
1
·
x
2
4
h(x)
=
x
5
2
+
2
Wie funktioniert die Substitutionsmethode in der Mathematik?
#486
Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine Substitution vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (Re- / Rücksubstitution).
Beispiel
Löse die Gleichung.
x
4
6x
2
+
8
=
0
Wie beeinflusst die Vielfachheit einer Nullstelle das Verhalten des Graphen?
#316
Die Vielfachheit einer Nullstelle wirkt sich auf das Verhalten des Graphen wie folgt aus
  • ungerade Vielfachheit (also einfach, dreifach, fünffach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle schneidet ("Nullstelle mit Vorzeichenwechsel").
  • gerade Vielfachheit (also doppelt, vierfach, sechsfach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle berührt ("Nullstelle ohne Vorzeichenwechsel").
Was ist der Vorteil eines faktorisierten Funktionsterms?
#485
Liegt ein Funktionsterm in faktorisierter Form vor, also

f(x) = p(x) · q(x)   [evtl. noch mehr Faktoren],

so erhält man alle Nullstellen von f, indem man die Nullstellen der einzelnen Faktoren bestimmt - denn ein Produkt ist Null, wenn ein Faktor Null ist.
Beispiel
f
 
x
=
x
4
3x
3
2x
2
·
x
+
1
3
 
. Ermittle alle Nullstellen.
Wie kann ein quadratischer Term faktorisiert werden?
#319
Ein quadratischer Term (q · x² + r · x + s) kann evtl. als Produkt von zwei linearen Termen (linear ist z.B. x + 2) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (Lösungsformel!) ab:
  • Zwei unterschiedliche Lösungen a und b: der Term zerfällt in q · (x − a) · (x − b).

  • Eine Lösung a: der Term zerfällt in q · (x − a)².

  • Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Beispiel
Zerlege, falls möglich, in Linearfaktoren:
a
 
   
 
2x
2
+
3x
+
2
b
 
   
 
3x
2
+
x
5