Hilfe
  • Hilfe speziell zu diesem Zwischenschritt
    Die Beträge der einzugebenden Zahlen ergeben in der Summe 120
  • Welche Verteilung der Zufallsgröße "Preis des Tickets" ergibt sich dadurch?
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 1 in Level 7
  • Runde auf ganze Prozent
  • Eine Fluggesellschaft verkauft 10% ihrer Tickets zum Billigpreis von 30€.
    Die übrigen Plätze werden zum regulären Preis von 180€ angeboten. 10 Tage vor dem Abreisetermin wird für die noch nicht verkauften Tickets ein Last-Minute-Preis von 90€ festgesetzt. Durch dieses Angebot können noch die Hälfte der Last-Minute-Tickets verkauft werden.
    Wieviel Prozent der Tickets müssen zum regulären Preis verkauft werden, damit die Fluggesellschaft auf einen Durchschnittspreis von 125€ pro Sitzplatz kommt?
    Es müssen mehr als 
     ▉ 
    %
     der Tickets zum regulären Preis verkauft werden.
    Schritt 1 von 4
    Wir bezeichnen die Einnahme pro Ticket als Zufallsgröße X und den Anteil der regulär verkauften Tickets mit p. Ergänzen Sie die folgende Tabelle mit aufsteigenden Werten der Zufallsgröße X:
    x
    i
    aufsteigend!
    P
    X
    =
    x
    i
    ?
    0,1
    ?
    p
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie berechnet man den Erwartungswert einer Zufallsvariablen?
#448
Den Erwartungswert E(X) einer Zufallsvariablen X erhält man, indem man jeden Wert von X mit der zugehörigen Wahrscheinlichkeit multipliziert und daraus die Summe bildet.
Beispiel
Zwei Würfel werden gleichzeitig geworfen. Bei einem 6er-Pasch erhält der Spieler 20€, bei jedem anderen Pasch 5€, ansonsten muss er 2€ zahlen. Lohnt sich dieses Spiel für ihn auf Dauer?
Was beschreiben Erwartungswert und Standardabweichung einer Zufallsgröße und wie berechnet man sie?
#700

Erwartungswert und Standardabweichung einer Zufallsgröße X:

Erwartungswert μ(X) (lies:"mü von X"):

Der Erwartungswert beschreibt den Mittelwert der Zufallsgröße, sprich die Zahl, die die Zufallsgröße im Durchschnitt annimmt.

Berechnung des Erwartungswertes:

  • Multipliziere jeden Wert xi von X mit der zugehörigen Wahrscheinlichkeit P(X=xi)
  • Addiere alle so erhaltenen Werte.
  • Als Formel: μ(X)=x1· P(X=x1)+ x2· P(X=x2) + ... + xn· P(X=xn)

Standardabweichung σ(X) (lies: "sigma von X")

Die Standardabweichung einer Zufallsgröße X gibt grob gesagt an, wie stark die Wahrscheinlichkeitsverteilung um den Erwartungswert gestreut ist.

Berechnung der Standardabweichung:

  • Bestimme den Erwartungswert μ.
  • Subtrahiere den Erwartungswert von jedem Wert xi den die Zufallsgröße annehmen kann.
  • Quadriere jeweils die Ergebnisse.
  • Multipliziere die Ergebnisse mit der zugehörigen Wahrscheinlichkeit.
  • Addiere alle so erhaltenen Produkte.
  • Ziehe vom Ergebnis die Quadratwurzel.
  • Als Formel: σ(x) = √ Σ (xi − μ)2· P(X = xi)=√ [(x1 − μ)2· P(X = x1)+ (x2 − μ)2· P(X = x2) + ... + (xn − μ)2· P(X = xn)]

Beispiel
Paul hat sich ein Glücksspiel überlegt: Es wird mit einem Würfel gewürfelt. Beim Würfeln einer Quadratzahl erhält der Spieler 5 Euro, ansonsten muss der Spieler 2 Euro zahlen. Lässt du dich auf das Spiel ein? Berechne Erwartungswert und Standardabweichung und interpretiere.
μ
 
X
=
?
σ
 
X
=
?
Was bedeuten und wie berechnet man das arithmetische Mittel und die Standardabweichung einer Datenreihe?
#699

Mittelwert und Standardabweichung einer Datenreihe x1, x2, ..., xn:

Mittelwert (Arithmetisches Mittel) x:

  • Addiere alle Daten und dividiere durch die Anzahl der Daten.
  • x=1/n · (x1 + x2 + ... + xn)

Empirische Standardabweichung s:

Die Standardabweichung ist ein Maß dafür, wie sehr die Werte der Datenreihe um den Mittelwert schwanken.

Berechnung der Standardabweichung:

  • Bestimme den Mittelwert x.
  • Subtrahiere den Mittelwert von jedem Wert xi der Datenreihe.
  • Quadriere jeweils die Ergebnisse.
  • Addiere alle quadrierten Werte.
  • Dividiere dann durch die Anzahl n der Daten.
  • Ziehe vom Ergebnis die Quadratwurzel.
  • Als Formel: s = √{ 1/n·[ (x1x)2+ (x2x)2 + ... + (xnx)2 ] }

Beispiel
Am Schuljahresende blickt Anton auf seine Ergebnisse der 6 Mathearbeiten zurück: 2     2     4     2     1     3
Berechne Mittelwert und Standardabweichung