Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
4.3 Lösen von Gleichungen - Teil 1, Matheübungen
Faktorisierung durch Ausklammern, Anwendung der Mitternachtsformel, Satz von Vieta, Substitution - G8 Lehrwerk Lambacher Schweizer - 9 Aufgaben in 2 Levels
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe ansehen
Hilfe zum Thema
Ein quadratischer Term
(q · x² + r · x + s)
kann evtl. als Produkt von zwei linearen Termen (linear ist z.B.
x + 2
) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (Lösungsformel!) ab:
Zwei unterschiedliche Lösungen a und b: der Term zerfällt in
q · (x − a) · (x − b)
.
Eine Lösung a: der Term zerfällt in
q · (x − a)²
.
Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 1
Faktorisiere falls möglich. Gib Brüche in der Form "a/b" bzw. "-a/b" ein. Fülle alle Felder mit "!" aus, wenn der Term nicht faktorisierbar ist.
Zwischenschritte aktivieren
2
−
5x
−
3x
2
=
x
−
x
+
Ergebnis prüfen
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Lernvideo
Faktorisierung von Polynomen (Teil 1)
Kanal: Mathegym
Lernvideo
Faktorisierung von Polynomen (Teil 2)
Kanal: Mathegym
Wie kann ein quadratischer Term faktorisiert werden?
#319
Ein quadratischer Term
(q · x² + r · x + s)
kann evtl. als Produkt von zwei linearen Termen (linear ist z.B.
x + 2
) geschrieben werden. Dies hängt von den Lösungen der entsprechenden Nullgleichung (Lösungsformel!) ab:
Zwei unterschiedliche Lösungen a und b: der Term zerfällt in
q · (x − a) · (x − b)
.
Eine Lösung a: der Term zerfällt in
q · (x − a)²
.
Keine Lösung ("Minus unter der Wurzel"): der Term ist nicht zerlegbar.
Beispiel
Zerlege, falls möglich, in Linearfaktoren:
a
−
2x
2
+
3x
+
2
b
−
3x
2
+
x
−
5
Titel
×
...
Schließen
Speichern
Abbrechen