Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
4.4 Ableitungsregeln - Teil 2 (Faktor- und Summenregel), Matheübungen
Schlüsselkonzept: Ableitung - Differenzialrechnung - Lehrwerk Lambacher Schweizer (5.-13. Klasse) - 27 Aufgaben in 7 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe ansehen
Hilfe zum Thema
Wenn f(x) = a · x
m
mit a ∈ ℝ und m ∈ ℤ \ {0}, dann ist
f
′
(x) = a · m · x
m−1
.
Spezialfälle:
f(x) = a · x ⇒ f ´ (x) = a
f(x) = a ⇒ f ´ (x) = 0
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 2
Bestimme den Ableitungsterm.
Zwischenschritte aktiviert
f
x
=
2
x
f ´
x
=
▉
x
▉
Schritt 1 von 3
Forme um:
f
x
=
·
x
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie lautet die Ableitung von f(x) = a·x^m und welche zwei Spezialfälle gibt es dazu?
#754
Wenn f(x) = a · x
m
mit a ∈ ℝ und m ∈ ℤ \ {0}, dann ist
f
′
(x) = a · m · x
m−1
.
Spezialfälle:
f(x) = a · x ⇒ f ´ (x) = a
f(x) = a ⇒ f ´ (x) = 0
Beispiel
f
x
=
1
2x
10
f ´
x
=
?
Was folgt für die Ableitung und jede Stammfunktion einer ganzrationalen Funktion mit ungeradem Grad und negativem Leitkoeffizienten?
#845
Die Ableitung von a·x
n
ist a·n·x
n−1
. Für ganzrationale Funktionen gilt daher:
Wenn f den Grad n besitzt, dann besitzt die Ableitung f´ den Grad n−1 und jede Stammfunktion F den Grad n+1. Insbesondere ist der Grad von f´ und F damit ungerade, falls der Grad von f eine gerade Zahl ist und umgekehrt.
Wenn der Leitkoeffizient von f(x), also der Faktor vor der höchsten x-Potenz, eine positive bzw. negative Zahl ist, dann gilt das auch für die Leitkoeffizienten von f´ und F.
Beispiel
Abgebildet ist der Graph der ganzrationalen Funktion f. Setze den Term der Ableitung f´(x) richtig zusammen. Wähle dazu aus der ersten und letzten Spalte jeweils den passenden Teilterm aus (in der Mitte steht immer 4x).
f´(x)
=
x
4
x
5
−
x
4
−
x
5
+
4x
+
x
+
1
−
1
Wie kann ein gebrochen rationaler Term in eine ganzrationale Form umgewandelt werden und welchen Vorteil hat das beim Ableiten?
#750
Liegt eine gebrochen rationale Funktion vor, deren Nenner nur eine x-Potenz enthält, so lässt sich der Funktionsterm umformen in eine Reihe von x-Potenzen. Die Ableitung kann dann ganz einfach mithilfe der Regel für Potenzfunktionen gebildet werden.
Beispiel
f
x
=
2x
7
−
3x
+
5
2x
f ´
x
=
?
Wie lautet die Ableitung der Funktion f(x) = a · x^r?
#341
Wenn f(x) = a · x
r
mit a ∈ ℝ und r ∈ ℚ \ {0}, dann ist
f
′
(x) = a · r · x
r−1
.
Beispiel 1
f
x
=
1
4
·
x
1
3
+
7x
−
2
+
2
3
f '
x
=
?
Beispiel 2
f
x
=
3
x
−
5
3
x
2
+
7
x
2
f '
x
=
?
Titel
×
...
Schließen
Speichern
Abbrechen