Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
4.8 Vermischte Übungen, Matheübungen
Gleichungen - Lehrwerk Westermann (5.-10. Klasse) - 21 Aufgaben in 4 Levels
Hilfe
Hilfe zum Thema
Eine lineare Gleichung bzw. Ungleichung erkennt man daran, dass die auftretenden Summanden entweder Konstanten oder Vielfache von x sind, z.B.
3x − 5 = 7x + 2 − 13x
Linear sind aber auch Gleichungen bzw. Ungleichungen, bei denen sich die auftretenden Terme so umformen lassen, dass die obere Bedingung erfüllt ist, z.B.
3 (x − 5) + 2x = (7x − 2) · 13
x² − 2x +1 = x² + 3
[durch Subtraktion von x² auf beiden Seiten verschwindet x²]
Nicht linear sind Gleichungen bzw. Ungleichungen, bei denen (evtl. nach Umformung) x² oder höhere Potenzen von x auftreten, z.B.
3x² − 5 = 7x + 2 − 13x
3x (x − 5) + 2x = (7x − 2) · 13
[links entsteht beim Ausmultiplizieren 3x²]
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 5
in Level 1
Ergänze die Gleichung so, dass sie (als lineare Gleichung) lösbar ist.
7x
2
−
14x
+
1
−
13x
=
34
+
6x
−
?
6x
7x
2
−
6x
−
7x
2
Ergebnis prüfen
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die
Hilfe
zu dieser Aufgabe an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Wie erkennt man lineare Gleichungen oder Ungleichungen und wann sind sie nicht linear?
#559
Eine lineare Gleichung bzw. Ungleichung erkennt man daran, dass die auftretenden Summanden entweder Konstanten oder Vielfache von x sind, z.B.
3x − 5 = 7x + 2 − 13x
Linear sind aber auch Gleichungen bzw. Ungleichungen, bei denen sich die auftretenden Terme so umformen lassen, dass die obere Bedingung erfüllt ist, z.B.
3 (x − 5) + 2x = (7x − 2) · 13
x² − 2x +1 = x² + 3
[durch Subtraktion von x² auf beiden Seiten verschwindet x²]
Nicht linear sind Gleichungen bzw. Ungleichungen, bei denen (evtl. nach Umformung) x² oder höhere Potenzen von x auftreten, z.B.
3x² − 5 = 7x + 2 − 13x
3x (x − 5) + 2x = (7x − 2) · 13
[links entsteht beim Ausmultiplizieren 3x²]
Wie löst man eine umfangreiche lineare Gleichung Schritt für Schritt?
#106
Gehe bei umfangreicheren linearen Gleichungen nach folgendem Schema vor
rechte und linke Seite so weit wie möglich vereinfachen
durch Addition und Subtraktion die Gleichung in die Form ax = b bringen, d.h. zunächst alle x-Vielfachen auf die eine Seite, die andere Seite x-frei
zuletzt durch a teilen
Beispiel
Löse die Gleichung
2
3
−
1
6
x
:
4
=
1
3
·
2
+
x
−
5
+
1
4
x
Beispiel
Gegeben ist eine zweistellige Zahl, deren Zehnerziffer um zwei kleiner als die Einerziffer ist. Vertauscht man beide Ziffern, so erhält man eine zweite Zahl. Multipliziert man die erste Zahl mit acht und subtrahiert davon sechs, so erhält man das Sechsfache der zweiten Zahl. Wie heißt die ursprüngliche Zahl? Löse mit Hilfe einer Gleichung!
Titel
×
...
Schließen
Speichern
Abbrechen