Die Ableitung f´ einer differenzierbaren Funktion f liefert für jede definierte Stelle x die lokale Änderungsrate (= Steigung des Graphen von f an dieser Stelle). Insbesondere zeigt das Vorzeichen von f´ an, ob f im betrachteten Intervall zunimmt oder abnimmt:
Achtung: die Tabelle ist von links nach rechts zu lesen, d.h. aus f´(x)>0 in einem bestimmten Intervall kann auf strenge Monotonie von f geschlossen werden - aber nicht umgekehrt. Wenn f in einem bestimmten Intervall streng monoton wächst, kann es dort durchaus einzelne Stellen geben, an denen die Ableitung gleich null ist (waagrechte Tangente).
Nicht differenzierbar an der Stelle x0 kann z.B. bedeuten, dass der Graph einen Knick aufweist (blau) oder an der Stelle x0 überhaupt nicht definiert ist (rot), wie hier für x0 = -3 illustriert. Im Fall "blau" existieren aber die einseitigen Grenzwerte des Differenzialquotienten ("einseitige Tangentensteigungen"), nämlich 0 (linksseitig) und -3/2 (rechtsseitig).
Bestimmung der lokalen Maxima und Minima einer Funktion:
Randextrema:
Bestimmung des globalen Maximums und Minimums: