Hilfe
  • Hilfe zum Thema
    Beispiele für Ereignis und Gegenereignis:

    Ereignis A: Mindestens ein Schuss geht daneben.
    Gegenereignis A: Kein Schuss geht daneben.

    Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
    Gegenereignis B: Alle gezogenen Kugeln sind rot.

    Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 5
  • Bestimme mit Hilfe des Gegenereignisses. Runde auf ganze Prozent.
  • Jakob wettet, dass er bei sechsmaligem Würfeln mindestens einmal Augenzahl 6 erhält. Mit welcher Wahrscheinlichkeit gewinnt er?
    P ≈  ▉ %
    Schritt 1 von 3
    Setze das GEGENereignis richtig zusammen:
    Bei Wurf Augenzahl würfeln.
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie berechnet man die Wahrscheinlichkeit eines Elementarereignisses in einem mehrstufigen Zufallsexperiment?
#246
Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit für ein Elementarereignis, indem man die Ast-Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert (1. Pfadregel).
Wie berechnet man die Wahrscheinlichkeit eines Ereignisses E in einem mehrstufigen Zufallsexperiment?
#248
Bei mehrstufigen Zufallsexperimenten kann ein Ereignis E mehrere Pfade im Baumdiagramm umfassen. Um die Wahrscheinlichkeit von E zu bestimmen, muss man die Wahrscheinlichkeiten dieser Pfade addieren (2. Pfadregel).
Beispiel
In einer Urne befinden sich zwei schwarze, zwei weiße und eine orange Kugeln. Es werden drei Kugeln hintereinander - ohne Zurücklegen - gezogen. Wie groß ist die Wahrscheinlichkeit, dass jede Farbe einmal drankommt?
Was sind Beispiele für Ereignisse und ihre Gegenereignisse mit den Begriffen "mindestens" oder "höchstens"?
#247
Beispiele für Ereignis und Gegenereignis:

Ereignis A: Mindestens ein Schuss geht daneben.
Gegenereignis A: Kein Schuss geht daneben.

Ereignis B: Höchstens 9 von 10 gezogenen Kugeln sind rot.
Gegenereignis B: Alle gezogenen Kugeln sind rot.

Die Wahrscheinlichkeiten von Ereignis und Gegenereignis ergänzen sich jeweils zu 100%

Was sind Schnittmenge und Vereinigungsmenge und welche Symbole repräsentieren sie?
#298
Überlege: Liegt ein Element der abgebildeten Menge in A oder nicht? Liegt es in B oder nicht? Liegt es zugleich in mehreren Mengen? Zur Erinnerung: ∩ bedeutet "und zugleich" also Schnittmengenbildung. ∪ bedeutet "im einen oder im anderen" also Vereinigungsmenge = "alles in einen Topf".
Was ist in der Stochastik bezüglich des Begriffs "oder" zu beachten?
#299
Überlege: Tritt Ereignis A ein? Tritt Ereignis B ein? Treten beide zugleich ein? Oder sind die beiden Ereignisse anders verknüpft?

Beachte auch den Unterschied von "Oder" und "Entweder oder". In der Stochastik bedeutet "x liegt in A oder in B", dass x in A oder in B oder in beiden Mengen zugleich liegen kann. Möchte man ausdrücken, dass x in A oder in B aber nicht in beiden zugleich liegt, so sagt man explizit: "x liegt ENTWEDER in A oder in B."

Was bedeutet es, wenn bei zwei Ereignissen A und B in der Stochastik "mindestens eines" oder "höchstens eines" eintritt?
#295
  • "Mindestens eines" heißt bei zwei Ereignissen: A oder B oder beide aber nicht keines.
  • "Höchstens eines" heißt bei zwei Ereignissen: Entweder A oder B oder keines von beiden aber nicht beide zugleich.
Was versteht man unter der Ergebnismenge Ω eines Zufallsexperiments?
#163

Unter Ergebnismenge Ω (oder auch Ergebnisraum) eines Zufallsexperiments versteht man die Menge aller Ergebnisse, die sich bei dem Experiment ergeben können.

Es hängt auch davon ab, welche Merkmale man überhaupt betrachtet. Daher können bei einem Zufallsexperiment meistens mehrere Ergebnismengen angegeben werden. Dabei sind folgende Regeln zu beachten:

  • Ω muss alle möglichen Ergebnisse bzgl. des betrachteten Merkmals enthalten.
  • Die in Ω enthaltenen Ergebnisse müssen klar voneinander abgrenzbar sein.