Hilfe
  • Hilfe zum Thema

    Rechenregeln für den Logarithmus

    Summen und Differenzen von Logarithmen mit gleicher Basis lassen sich zusammenfassen:

    (1) logb x + logb y = logb (x · y)

    (2) logb x − logb y = logb (x : y)

    Achtung: Für Produkte und Quotienten zweier Logarithmen gibt es keine entsprechende Formel!

    Ist das Argument des Logarithmus eine Potenz, so lässt sich umformen:

    (3) logb ar = r · logb a

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Forme so um, dass möglichst kleine natürliche Argumente entstehen.
  • ln6
    =
         
     
    ln2
    +
    ln3
         
     
    ln2
    ·
    ln3
         
     
    ln
    1
    +
    ln5
         
     
    ln
    1
    ·
    ln5
    (Mehrfachauswahl möglich)
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Welche grundlegenden Rechenregeln gelten für Logarithmen?
#1232

Rechenregeln für den Logarithmus

Summen und Differenzen von Logarithmen mit gleicher Basis lassen sich zusammenfassen:

(1) logb x + logb y = logb (x · y)

(2) logb x − logb y = logb (x : y)

Achtung: Für Produkte und Quotienten zweier Logarithmen gibt es keine entsprechende Formel!

Ist das Argument des Logarithmus eine Potenz, so lässt sich umformen:

(3) logb ar = r · logb a

Wie lauten die Ableitungen der Exponentialfunktion und der natürlichen Logarithmusfunktion?
#518
f (x) = ex ⇒ f ´ (x) = ex
f (x) = ln(x) ⇒ f ´ (x) =1/x
Wann und wie wird die Kettenregel in der Mathematik angewendet?
#329
Kettenregel:

Wenn f(x) = g( h(x) ), dann ist f (x) = g( h(x) )⋅h(x)

Beispiel
f
 
x
=
x
·
cos
ln(x)
f '
 
x
=
?
Wie lauten die Produkt- und Quotientenregel der Ableitung?
#652
Produktregel:

Wenn f(x) = u(x)⋅v(x) dann ist f (x) = u(x)⋅v(x) + v(x)⋅u(x)

Quotientenregel:

Wenn f(x)= u(x) / v(x) dann ist f (x) = [ u(x)⋅v(x) − v(x)⋅u(x) ] / [v(x)]2

Beispiel
f
 
x
=
x
·
ln(x)
f '
 
x
=
?
Wie verhalten sich der Quotient aus ln(x) und x^n für x → ∞ und das Produkt aus ln(x) und x^n für x → 0^+?
#554
Die ln-Funktion verändert sich wesentlich langsamer als jede Potenzfunktion. Daher gilt:
  • für x → ∞ strebt der Quotient aus ln(x) und xn gegen 0
  • für x → 0+ strebt das Produkt aus ln(x) und xn gegen 0
Beispiel
lim
x → ∞
    
ln
 
1
x
x
x
2
=
?
Wie verhält sich die natürliche Logarithmusfunktion ln(x) an den Rändern ihres Definitionsbereichs?
#552
ln(x) strebt
  • gegen −∞ für x → 0+
  • gegen ∞ für x → ∞
Beispiel
lim
x → −∞
    
ln
 
1
x
2
x
+
1
=
?
Wie kann eine Funktion f(x) abgewandelt werden, um ihren Graphen Gf zu strecken, stauchen, verschieben oder zu spiegeln?
#488
h ( x ) = Gh geht aus Gf hervor durch
f ( x + a ) Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0 Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x ) Spiegelung an der x-Achse
f ( a · x ), a > 0 Streckung mit Faktor 1/a in x-Richtung
f ( −x ) Spiegelung an der y-Achse
Wie löst man Gleichungen der Form ln(...) = b und was ergibt sich, wenn b = 0?
#860
Gleichungen der Art

ln(...)=b

löst man, indem man auf beiden Seiten exp anwendet. Merke dir für den Spezialfall b=0, dass

e0=1.

Beispiel
Löse die Gleichung
ln
 
3
11x
=
0
 
ohne Taschenrechner.