Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Ein Gleichungssystem besteht aus mehreren Gleichungen mit einer oder mehreren Variablen. Grundsätzlich sind drei Fälle denkbar:
    • eine eindeutige Lösung
    • unendlich viele Lösungen
    • keine Lösung
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Berechne im Kopf. Gib evtl. auftretende Brüche in der Form "a/b" bzw. "-a/b" an. Gib "!" an, falls es keine oder unendlich viele Lösungen des Gleichungssystems gibt.
  • 3x
    =
    2
    y
    y
    =
    3
    x
    =
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Was ist ein Gleichungssystem und welche Aussagen lassen sich über die Lösungsmenge treffen?
#366
Ein Gleichungssystem besteht aus mehreren Gleichungen mit einer oder mehreren Variablen. Grundsätzlich sind drei Fälle denkbar:
  • eine eindeutige Lösung
  • unendlich viele Lösungen
  • keine Lösung
Beispiel
Betrachte die folgenden drei Gleichungssysteme und bestimme jeweils, falls möglich, die Lösung(en).
-----------------------
x
=
1
y
=
x
2
-----------------------
x
+
y
=
2
2x
+
2y
=
4
-----------------------
x
+
y
=
2
x
+
y
=
1
-----------------------
Wie kann ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten graphisch interpretiert werden?
#367
Ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten kann graphisch übersetzt werden:

Jede Gleichung (=Zeile) entspricht einer Geraden. Die Lösung des Gleichungssystems entspricht dann dem Schnittpunkt beider Geraden. Beachte die Sonderfälle:

  • keine Lösung bedeutet, dass die Geraden echt parallel sind
  • unendlich viele Lösungen bedeutet, dass die Geraden identisch sind