Hilfe
  • Hilfe zum Thema
    Ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten kann graphisch übersetzt werden:

    Jede Gleichung (=Zeile) entspricht einer Geraden. Die Lösung des Gleichungssystems entspricht dann dem Schnittpunkt beider Geraden. Beachte die Sonderfälle:

    • keine Lösung bedeutet, dass die Geraden echt parallel sind
    • unendlich viele Lösungen bedeutet, dass die Geraden identisch sind
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 3 in Level 1
  • Entscheide.
  • graphik
    Der Schnittpunkt beider Geraden ist Lösung eines Gleichungssystems. Aus welchen zwei Gleichungen setzt es sich zusammen?
    I:   
     
    x
    3y
    +
    3
    =
    0
    II:   
     
    x
    +
    3y
    3
    =
    0
    III:   
     
    3x
    y
    2
    =
    0
    IV:   
     
    3x
    +
    y
    2
    =
    0
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Lineare Gleichungssysteme, einfache Beispiele
Lernvideo

Lineare Gleichungssysteme, einfache Beispiele

Kanal: Mathegym

Wie kann ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten graphisch interpretiert werden?
#367
Ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten kann graphisch übersetzt werden:

Jede Gleichung (=Zeile) entspricht einer Geraden. Die Lösung des Gleichungssystems entspricht dann dem Schnittpunkt beider Geraden. Beachte die Sonderfälle:

  • keine Lösung bedeutet, dass die Geraden echt parallel sind
  • unendlich viele Lösungen bedeutet, dass die Geraden identisch sind
Was ist die allgemeine Gleichung einer Geraden und was bedeuten die darin vorkommenden Parameter?
#632
Eine lineare Funktion mit der Gleichung y = m·x + b ergibt grafisch immer eine Gerade. Dabei ist m die Steigung (zeigt an, wie stark die Gerade steigt oder fällt) und b der y-Achsenabschnitt (zeigt an, wo die Gerade die y-Achse schneidet) der Gerade.
  • Ist m positiv, so steigt die Gerade (von links nach rechts)
  • Ist m negativ, so fällt die Gerade (von links nach rechts)
  • Ist m = 0, so verläuft die Gerade parallel zur x-Achse
Beispiel
Bestimme zeichnerisch: Welchen y-Achsenabschnitt besitzt die Gerade g, die durch den Punkt (-3 ; -1) geht und parallel ist zur Geraden h mit der Gleichung y = 1 − 0,25x ?