Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Da es sich in den Feldern um absolute Häufigkeiten handelt, musst du am Ende noch durch die Gesamtzahl dividieren, um die relative Häufigkeit (=Wahrscheinlichkeit) zu erhalten.
  • Ergänze zunächst die Vierfeldertafel so weit, dass du die relevanten Werte ablesen kannst.
  • Nach dem Additionssatz gilt für beliebige Ereignisse A und B:

    P( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B )

    Alternativ berechnet man die "Oder-Wahrscheinlichkeit" wie folgt:

    P( A ∪ B ) = P( A ∩ B ) + P( B ∩ A ) + P( A ∩ B )

TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu dieser Aufgabe" unterhalb der Aufgabe.

Berechne. Die grauen Felder werden nicht geprüft. Brüche in der Form a/b eingeben.

  • A
    A
    B
    30
    B
    3
    8
    56
    P
     
    A
     
     
    B
    =
    Achtung: hier kommt ein Bruch a/b raus!
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Welche Werte stehen in einer Vierfeldertafel und was sagen die Randwerte sowie das Feld unten rechts aus?
#381

In der Vierfeldertafel können absolute Häufigkeiten (natürliche Zahlen) oder relative Häufigkeiten / Wahrscheinlichkeiten (Dezimalbrüche) gegenübergestellt werden.

Alle vier Felder ergeben in der Summe die Gesamtzahl der Stichproben (absolute Häufigkeiten) bzw. 1 (realive Häufigkeiten / Wahrscheinlichkeiten). Diese steht ganz unten rechts.

Neben den vier eigentlichen Feldern sind die Randfelder zu beachten. Hier handelt es sich um die Summen der jeweiligen Zeilen bzw. Spalten.

Beispiel
Ergänze die Vierfeldertafel:
(a) absolute Häufigkeiten
A
A
B
4
13
B
25
150
(b) relative Häufigkeiten
A
A
B
0,17
0,83
B
0,15
 
Wie lautet der Additionssatz für die Wahrscheinlichkeit von P(A ⋆ B)?
#484
Nach dem Additionssatz gilt für beliebige Ereignisse A und B:

P( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B )

Alternativ berechnet man die "Oder-Wahrscheinlichkeit" wie folgt:

P( A ∪ B ) = P( A ∩ B ) + P( B ∩ A ) + P( A ∩ B )

Beispiel
A
A
B
0,2
0,55
B
0,35
P
 
A ∪ B
=
?