Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Sei α ein Winkel < 90° im rechtwinkligen Dreieck. Mit "Gegenkathete" sei die Kathete gemeint, die α gegenüberliegt, mit "Ankathete" diejenige, die an α anliegt. Dann gelten folgende Zusammenhänge:
    • sin(α)= Gegenkathete / Hypotenuse
    • cos(α)= Ankathete / Hypotenuse
    • tan(α)= Gegenkathete / Ankathete
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Berechne die gesuchte Seite. Sofern nicht anders festgelegt ist α der Winkel bei A, β der Winkel bei B und γ der Winkel bei C. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • γ
    =
    90°
    a
    =
    5,5cm
    α
    =
    35°
    c
     
     
    cm
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Wie lauten die Formeln für Sinus, Kosinus und Tangens im rechtwinkligen Dreieck?
#454
Sei α ein Winkel < 90° im rechtwinkligen Dreieck. Mit "Gegenkathete" sei die Kathete gemeint, die α gegenüberliegt, mit "Ankathete" diejenige, die an α anliegt. Dann gelten folgende Zusammenhänge:
  • sin(α)= Gegenkathete / Hypotenuse
  • cos(α)= Ankathete / Hypotenuse
  • tan(α)= Gegenkathete / Ankathete
Beispiel 1
Von einem rechtwinkligen Dreieck mit ∠C = 90° ist bekannt: a = 3 und β = 32°. Berechne die restlichen Seiten und Winkel.
Beispiel 2
In einem rechtwinkligen Dreieck mit rechtem Winkel bei C ist bekannt: b = 10, c = 11. Berechne β.