Hilfe
  • Du musst zuerst μ und σ berechnen!
  • In einer Bernoulli-Kette der Länge n und Treffer-Wahrscheinlichkeit p bezeichne die Zufallsgröße X die Trefferzahl. Dann gilt:

    • Erwartungswert μ(X) =n·p
    • Standardabweichung σ(X) = √ n·p·(1-p)
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme die Wahrscheinlichkeit des angegebenen Intervalls.
Hinweis: Nur für Schüler geeignet, die einen CAS-Rechner oder einen GTR im Unterricht verwenden. Ergebnis(se) falls erforderlich auf die 1. Dezimalstelle gerundet eingeben!

  • n=500; p=0,8
    Wahrscheinlichkeit der 2σ-Umgebung:
    P
     
    μ
     
     
    X
     
     
    μ
    +
     
     
    %
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Welche Formeln gelten für den Erwartungswert und die Standardabweichung der Trefferzahl X in einer Bernoulli-Kette?
#710

In einer Bernoulli-Kette der Länge n und Treffer-Wahrscheinlichkeit p bezeichne die Zufallsgröße X die Trefferzahl. Dann gilt:

  • Erwartungswert μ(X) =n·p
  • Standardabweichung σ(X) = √ n·p·(1-p)
Beispiel
Eine Münze wird 200-mal geworfen. Die Zufallsgröße X stehe für die Anzahl der geworfenen "Wappen".
Wahrscheinlichkeit, dass X einen Wert innerhalb der 2σ-Umgebung annimmt:
P
 
μ
 
 
X
 
 
μ
+
 
 
?%