Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Die Beträge der einzugebenden Zahlen ergeben in der Summe 15
  • Hilfe zum Thema
    Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
    • P als Aufhängepunkt und
    • den Normalenvektor von E als Richtungsvektor.
    Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
    • P als Aufhängepunkt und
    • den Richtungsvektor von g als Normalenvektor.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 4 in Level 1
  • Gib an ohne zu rechnen.
  • ...die Lotgerade zur Ebene E durch den Punkt P.
    E:
     
     
    8x
    1
    +
    x
    2
    4x
    3
    +
    11
    =
    0
    P
    2|-1|3
    g:
     
     
    X
    =
    +
    λ
    ·
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie konstruiert man die Lotgerade zu einer Ebene und die Lotebene zu einer Geraden durch einen Punkt?
#795
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Richtungsvektor von g als Normalenvektor.
Wie bestimmt man den Abstand eines Punktes zu einer Ebene in Koordinatenform?
#600
Um den Abstand eines Punktes P(p1 | p2 | p3) von einer Ebene E: n1 x1 + n2 x2 + n3 x3 + n0 = 0 zu ermitteln, gehe wie folgt vor:
  1. Setze P in E ein, d.h. bestimme den Term n1 p1 + n2 p2 + n3 p3 + n0.
  2. Teile den Betrag vom Ergebnis oben durch die Länge des Normalenvektors mit den Koordinaten n1, n2 und n3.
Beispiel
Welchen Abstand hat der Punkt P(1|-2|6) von der Ebene E
:
2x
1
+
x
2
4x
3
9
=
0
 
?