Hilfe
  • Allgemeine Hilfe zu diesem Level
    Betrachte nur den relevanten Pfad (kein vollständiges Baumdiagramm!)
  • Hilfe zum Thema
    Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit für ein Elementarereignis, indem man die Ast-Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert (1. Pfadregel).
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Bestimme die gesuchte Wahrscheinlichkeit. Runde auf ganze Prozent.
  • Ein Würfel und eine Münze werden gleichzeitig geworfen. Mit welcher Wahrscheinlichkeit zeigt der Würfel Augenzahl 6 und die Münze Kopf an?
    P ≈
     
     ▉ 
    %
    Schritt 1 von 2
    Die Abbildung zeigt den hierfür relevanten Pfad des Baumdiagramms. Gib die Astwahrscheinlichkeiten an:
    graphik
    x
    =
    ;
    y
    =
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema
Wie berechnet man die Wahrscheinlichkeit eines Elementarereignisses in einem mehrstufigen Zufallsexperiment?
#246
Bei einem mehrstufigen Zufallsexperiment erhält man die Wahrscheinlichkeit für ein Elementarereignis, indem man die Ast-Wahrscheinlichkeiten des zugehörigen Pfades im Baumdiagramm multipliziert (1. Pfadregel).
Wie berechnet man die Wahrscheinlichkeit eines Ereignisses E in einem mehrstufigen Zufallsexperiment?
#248
Bei mehrstufigen Zufallsexperimenten kann ein Ereignis E mehrere Pfade im Baumdiagramm umfassen. Um die Wahrscheinlichkeit von E zu bestimmen, muss man die Wahrscheinlichkeiten dieser Pfade addieren (2. Pfadregel).
Beispiel
In einer Urne befinden sich zwei schwarze, zwei weiße und eine orange Kugeln. Es werden drei Kugeln hintereinander - ohne Zurücklegen - gezogen. Wie groß ist die Wahrscheinlichkeit, dass jede Farbe einmal drankommt?
Beispiel
Aus einer Urne mit zwei schwarzen und fünf weißen Kugeln werden vier Kugeln nacheinander zufällig gezogen (ohne Zurücklegen). Ermittle mit Hilfe eines Baumdiagramms, wie viele unterschiedliche Ergebnisse sich dabei ergeben können.