Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
7.2 Untersuchung von Verknüpfungen mit der ln-Funktion, Matheübungen
Natürliche Logarithmusfunktion - Lehrwerk Lambacher Schweizer (5.-12. Klasse)
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Löse die Aufgabe Schritt für Schritt.
Zwischenschritte aktiviert
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
k
·
ln
x
2
+
k
und
k
∈
ℝ
+
mit jeweils maximalem Definitionsbereich
D
=
ℝ
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Weise nach, dass die Graphen aller Scharfunktionen die gleiche Symmetrieeigenschaft besitzen.
b) Ermittle das Verhalten von f an den Rändern von
D
f
.
c) Bestimme in Abhängigkeit von k Anzahl und Lage der Nullstellen von
f
k
.
d) Zeige, dass alle Funktionen der Schar das gleiche Monotonieverhalten besitzen.
e) Ermittle den Wert von k, für den das Minimum von
f
k
den kleinstmöglichen Wert annimmt. Gib den zugehörigen Tiefpunkt von
f
k
an.
f) Berechne für die beiden Graphen
G
k
mit
k
=
1
e
bzw.
k
=
1
jeweils die Nullstellen und die Funktionswerte an den Stellen
x
=
2
und
x
=
4
. Zeichne die beiden Graphen auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
4
≤
x
≤
4
.
Schritt 1/10
Zu a)
Welche der folgenden Terme stimmen überein?
−
k
·
ln
−
x
2
+
k
k
·
ln
−
x
2
+
k
k
·
ln
x
2
+
k
k
·
ln
x
2
−
k
Welche Eigenschaft haben somit alle Graphen
G
k
?
Achsensymmetrie bezüglich der x-Achse
Achsensymmetrie bezüglich der y-Achse
Punktsymmetrie bezüglich des Ursprungs
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Wie kann eine Funktion f(x) abgewandelt werden, um ihren Graphen G
f
zu strecken, stauchen, verschieben oder zu spiegeln?
#488
h ( x ) =
G
h
geht aus G
f
hervor durch
f ( x + a )
Verschiebung um |a| Einheiten nach rechts (a < 0) bzw. links (a > 0)
f ( x ) + a
Verschiebung um |a| Einheiten nach oben (a > 0) bzw. unten (a < 0)
a · f ( x ), a > 0
Streckung (a > 1) bzw. Stauchung (a < 1) in y-Richtung
− f ( x )
Spiegelung an der x-Achse
f ( a · x ), a > 0
Streckung mit Faktor 1/a in x-Richtung
f ( −x )
Spiegelung an der y-Achse
Beispiel
Gegeben ist die Funktion f mit
f
x
=
e
·
ln
x
x
2
und maximalem Definitionsbereich
D
f
. Der Graph von f wird mit
G
f
bezeichnet.
a) Gib
D
f
an.
b) Ermittle das Verhalten von f an den Rändern der Definitionsmenge.
c) Berechne alle Nullstellen von f.
d) Bestimme Lage und Art aller Extrempunkte von
G
f
.
e) Berechne f(8) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
0
<
x
≤
8
.
f) Gib die Wertemenge von f an.
Titel
×
...
Schließen
Speichern
Abbrechen