Hilfe
  • Hilfe speziell zu dieser Aufgabe
    Jedes gleichschenklige Dreieck ist zu einer Ebene symmetrisch, nämlich zur Symmetrieebene der Basis [AB]. Überlege, wie der Punkt C bezüglich dieser Ebene liegen muss.
  • Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
    • P als Aufhängepunkt und
    • den Normalenvektor von E als Richtungsvektor.
    Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
    • P als Aufhängepunkt und
    • den Richtungsvektor von g als Normalenvektor.


    Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
    • Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
    • Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
    • Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.

Ergänze einen weiteren Punkt so, dass die angegebene Figur entsteht.

  • Von einem gleichschenkligen Dreieck ABC mit Basis AB sind die Punkte A(-1|-4|7) und B(2|-2|2) bekannt.
    Außerdem weiß man, dass der Punkt C auf der Geraden g mit der folgenden Gleichung liegt:
    g:
     
     
    X
    =
    4
    3
    9
    +
    λ
    ·
    1
    1
    2
    Bestimme die Koordinaten des fehlenden Punkts C des gleichschenkligen Dreiecks:
    C
     
    |
    |
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie führt man Spiegelungen geometrischer Objekte an Geraden und Ebenen durch?
#799
Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
  • Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.
  • Spiegelung einer Kugel an einer Ebene E: Spiegle den Mittelpunkt der Kugel an E und übernimm den Radius.
Wie konstruiert man geometrische Objekte wie Lotgeraden, Lotebenen und führt Spiegelungen durch?
#1308
Für die Lotgerade g zu einer Ebene E durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Normalenvektor von E als Richtungsvektor.
Für die Lotebene E zu einer Geraden g durch einen Punkt P wählt man:
  • P als Aufhängepunkt und
  • den Richtungsvektor von g als Normalenvektor.


Spiegelungen von geometrischen Objekten an anderen führt man durch wie folgt:
  • Spiegelung eines Punkts P an einer Geraden g: Bestimme die Lotebene E zu g durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung eines Punkts P an einer Ebene E: Bestimme die Lotgerade g zu E durch P. Der Schnittpunkt S von E und g ist der Lotfußpunkt. Schließlich addiert man zum Ortsvektor von S den Verbindungsvektor von P und S.
  • Spiegelung einer Geraden g an einer Ebene E: Spiegle zwei Punkte von g an der Ebene E und stelle die Gerade durch die gespiegelten Punkte auf.