Hilfe
  • Hilfe zum Thema
    Gegeben ist ein Dreieck ABC, in dem die Winkel α, β und γ den Seiten a, b und c gegenüberliegen. Nach dem Kosinussatz gilt:

    a² = b² + c² − 2bc · cos(α)

    b² = a² + c² − 2ac · cos(β)

    c² = a² + b² − 2ab · cos(γ)

    Am besten, man merkt sich den Satz so:

    "(beliebige) Seite zum Quadrat = Summe der anderen beiden Seitenquadrate minus 2 mal Produkt dieser Seiten mal cos vom Zwischenwinkel"

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 2
  • Berechne den fehlenden Winkel mit Hilfe des Kosinussatzes. Ergebnis(se) mit 2 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!
  • Skizze:
     
    graphik
    α ≈
     
     ▉ 
     
    °
    Schritt 1 von 3
    Ergänze:
    2
    =
    2
    +
    7,8
    2
    2
    ·
    5,2
    ·
    ·
    cos
     
    α
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Wie lautet der Kosinussatz und wie wird er angewendet?
#648
Gegeben ist ein Dreieck ABC, in dem die Winkel α, β und γ den Seiten a, b und c gegenüberliegen. Nach dem Kosinussatz gilt:

a² = b² + c² − 2bc · cos(α)

b² = a² + c² − 2ac · cos(β)

c² = a² + b² − 2ab · cos(γ)

Am besten, man merkt sich den Satz so:

"(beliebige) Seite zum Quadrat = Summe der anderen beiden Seitenquadrate minus 2 mal Produkt dieser Seiten mal cos vom Zwischenwinkel"

Beispiel
Das folgende Video zeigt anhand eines Beispiels, wie man den Kosinussatz anwendet.
Wie wendet man den Sinus- und Kosinussatz in Sachaufgaben an und unter welchen Voraussetzungen?
#888

In Sachaufgaben kannst du folgendermaßen vorgehen:

  1. Suche in der Figur nach Dreiecken mit mindestens drei gegebenen Stücken. (Tipp: Markiere in einer Skizze die gegebenen Stücke grün und die gesuchten Stücke rot.)
  2. Je nach Art der gegebenen Stücke kannst du nun den Sinus- oder den Kosinussatz verwenden:
    • Eine Strecke und zwei Winkel gegeben: Der dritte Winkel ergibt sich aus der Winkelsumme, die fehlenden Strecken aus dem Sinussatz.
    • Zwei Strecken und der Zwischenwinkel gegeben: Die dritte Strecke ergibt sich aus dem Kosinussatz, die fehlenden Winkel aus dem Sinussatz.
    • Zwei Strecken und ein anderer Winkel gegeben: Die weiteren Winkel ergeben sich aus dem Sinussatz und der Winkelsumme, die fehlende Strecke aus dem Kosinussatz.
    • Drei Strecken gegeben: Ein Winkel kann mit dem Kosinussatz berechnet werden, die restlichen mit dem Sinussatz bzw. aus der Winkelsumme.
Tipp: In rechtwinkligen Dreiecken werden Sinus- und Kosinussatz nicht benötigt, da du einfacher mit dem Sinus, Kosinus und Tangens bzw. dem Satz von Pythagoras arbeiten kannst.