Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Achsen- und Punktsymmetrie - Konstruktionen, Matheübungen
Konstruktion von Symmetrieachse, Winkelhalbierenden, Lot, Symmetriezentrum, optional unter Verwendung von GeoGebra
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
Hilfe
Beispielaufgabe
Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
TIPP
GeoGebra:
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.
Konstruiere mit Zirkel und Lineal:
Das Lot zur Geraden AB im Punkt B.
Auswahl an Konstruktionsschritten:
Kreis um B, Schnittpunkte C und D mit AB
Kreis um A, Schnittpunkte C und D mit AB
Kreis um C
Kreis um D
gleich große Kreise um C und D
gleich große Kreise um A und B
Eine der folgenden Kombinationen führt zum Ergebnis:
6+1+3+4
1+3+4
2+5
1+5
GeoGebra
GeoGebra
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
GeoGebra-Editor
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Geogebra-Editor anzeigen
Konstruiere das Lot zur Geraden AB im Punkt B.
Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Stoff zum Thema
Was ist die Eigenschaft von punktsymmetrischen Punkten bezüglich eines Zentrums?
#387
Sind zwei Punkte P und P´ punktsymmetrisch bzgl. eines Zentrums Z, so wird ihre Verbindungsstrecke von Z halbiert.
Beispiel 1
Gegeben sind die Punkte P und P´. Konstruiere das Zentrum Z der Punktspiegelung, die P auf P´ abbildet.
Beispiel 2
Der Punkt P soll am Zentrum Z gespiegelt werden.
Welche einzigartige Eigenschaft besitzen Punkte auf der Symmetrieachse bezüglich eines Punkts P und seines Spiegelpunkts P´?
#385
Punkte, die auf der Symmetrieachse liegen, haben eine exklusive Eigenschaft (d.h. nur sie haben diese Eigenschaft): Sie sind zu symmetrischen Punkten gleich weit entfernt. D.h.
sind P und P´ zueinander achsensymmetrische Punkte und A ein beliebiger Punkt der Achse, so ist dieser zu P und P´gleich weit entfernt.
sind P und P´ zueinander achsensymmetrische Punkte und von A gleich weit entfernt, so muss A auf der Spiegelachse liegen.
Beispiel 1
Ein Winkel soll halbiert werden.
Beispiel 2
Gegeben sind die Punkte P und P'. Gesucht ist die Spiegelachse a, die P auf P' abbildet.
Beispiel 3
(A) Von P aus soll ein Lot auf g gefällt werden (P ∉ g).
(B) Im Punkt P soll ein Lot zur Geraden g errichtet werden (P ∈ g).
Beispiel 4
Der Punkt P soll an der Achse a gespiegelt werden.
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen