Hilfe
  • Allgemeine Hilfe zu diesem Level
    Die Vielfachheit einer Nullstelle wirkt sich auf das Verhalten des Graphen wie folgt aus
    • ungerade Vielfachheit (also einfach, dreifach, fünffach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle schneidet ("Nullstelle mit Vorzeichenwechsel").
    • gerade Vielfachheit (also doppelt, vierfach, sechsfach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle berührt ("Nullstelle ohne Vorzeichenwechsel").

Welcher Graph passt zur Funktion?

  • f
     
    x
    =
    1
    2
     
    x
    1
    ·
    x
    +
    2
    3
    graphik
     
         
     
    graphik
    graphik
     
         
     
    graphik
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Tipp: Wähle deinen Lehrplan, und wir zeigen dir genau die Aufgaben an, die für deine Schule vorgesehen sind.
Lernvideo
Ganzrationale Funktionen (Teil 2)

Die Vielfachheit einer Nullstelle wirkt sich auf das Verhalten des Graphen wie folgt aus
  • ungerade Vielfachheit (also einfach, dreifach, fünffach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle schneidet ("Nullstelle mit Vorzeichenwechsel").
  • gerade Vielfachheit (also doppelt, vierfach, sechsfach usw.) bedeutet, dass der Graph die x-Achse an der betreffenden Stelle berührt ("Nullstelle ohne Vorzeichenwechsel").
Jede Nullstelle einer ganzrationalen Funktion besitzt eine bestimmte Vielfachheit.

Ist a eine Nullstelle, so kann f(x) als Produkt mit Faktor x − a geschrieben werden. Kommt x − a genau n mal als Faktor vor (also "hoch n"), so nennt man a eine n-fache Nullstelle.

Beispiel
Bestimme jeweils die Nullstellen und ihre Vielfachheiten:
f(x)
=
x
1
2
·
x
+
2
g(x)
=
x
2
+
1
·
x
2
4
h(x)
=
x
5
2
+
2
Der Satz vom Nullprodukt sagt:

Ist ein Produkt von zwei Zahlen Null, dann muss mindetens ein Faktor Null sein.

In etwas formalerer Schreibweise: Aus a·b= 0 folgt a = 0 und/oder b = 0.

Es folgt sofort: Ist ein Produkt aus mehreren Faktoren Null, dann muss mindetens ein Faktor Null sein.

Vielfachheit von Lösungen:

Die Gleichung (x-1)2 = 0 hat nur die Lösung x = 1, da der Faktor (x-1) aber zwei Mal auftritt, sagt man, dass x = 1 eine zweifache Lösung ist.

Entsprechend gibt es einfache, dreifache usw. Lösungen.

Beispiel
Löse die Gleichung.
x
1
·
3x
5
2
=
0
Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine Substitution vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (Re- / Rücksubstitution).
Beispiel 1
Löse die Gleichung
 
x
4
6x
2
+
8
=
0
Beispiel 2
Löse die Gleichung
 
x
4
6x
2
+
8
=
0