Hilfe
    • Achsensymmetrie zur y-Achse:
    • Für alle x aus dem Definitionsbereich gilt:
      f(x) = f(-x)

    • Punktsymmetrie zum Ursprung:
    • Für alle x aus dem Definitionsbereich gilt:
      -f(x) = f(-x)

    • Spezialfall: ganzrationale Funktionen

    • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
      Also gilt:
      Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

      -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
      Also gilt:
      Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.

    • Hinweis:
    • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.

Untersuche, ob der Graph der Funktion symmetrisch zur y-Achse oder symmetrisch zum Ursprung des Koordinatensystems (KOSY) ist.

  • f
     
    x
    =
    2x
    x
    2
    3
    Der Graph
    ist symmetrisch zur y-Achse.
    ist symmetrisch zum Ursprung.
    ist weder symmetrisch zur y-Achse noch zum Ursprung.
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Mathe-Aufgaben passend zu deinem Lehrplan

Aufgaben für deinen Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
  • Achsensymmetrie zur y-Achse:
  • Für alle x aus dem Definitionsbereich gilt:
    f(x) = f(-x)

  • Punktsymmetrie zum Ursprung:
  • Für alle x aus dem Definitionsbereich gilt:
    -f(x) = f(-x)

  • Spezialfall: ganzrationale Funktionen

  • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

    -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.

  • Hinweis:
  • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
Eine Definitionslücke ist (anders als bei einer Polstelle) behebbar, wenn der "problematische" Faktor im Nenner herausgekürzt werden kann. Zur näheren Bestimmung von Nullstellen, Polstellen und (evtl. behebbaren) Definitionslücken sollte man also wie folgt vorgehen:
  1. Zähler und Nenner so weit wie möglich faktorisieren
  2. Definitionsmenge bestimmen: ALLE auftretenden Faktoren im Nenner, die Null werden können, liefern eine Definitionslücke (ganz gleich, ob man sie herauskürzen kann oder nicht)
  3. Definitionslücken näher spezifizieren: behebbar, wenn herauskürzbar; ansonsten Polstelle
  4. Nullstellen bestimmen: nur solche Faktoren im Zähler, die nicht herausgekürzt werden können, liefern Nullstellen der Funktion.
Beispiel
Bestimme evtl. auftretende Nullstellen und Definitionslücken und charakterisiere diese näher.
f(x)
=
4
6x
9x
3
4x
Beispiel
Untersuche die folgende rationale Funktion hinsichtlich evtl. Defintionslücken, Polstellen, Nullstellen sowie Asymptoten und skizziere anhand der gewonnenen Informationen den Graph.
f(x)
=
2x
3
8x
6x
2
3x
3