Hilfe
  • Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Nullform ax² + bx + c = 0. Mit Hilfe der Diskriminante D = b² − 4ac bekommt man die Antwort:

    • D > 0 ⇔ zwei Schnittstellen
    • D = 0 ⇔ eine Berührstelle
    • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Bestimme mit Hilfe der Diskriminante, ob sich beide Graphen schneiden, berühren oder ob es keine gemeinsamen Punkte gibt.

  • f
     
    x
    =
    x
    2
    2x
    g
     
    x
    =
    3x
    6
    schneiden
    berühren
    keine gemeinsamen Punkte
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Aufgaben passend zu deinem Lehrplan

Tipp: Wähle deine Schule/Bundesland, und wir zeigen dir genau die Aufgaben an, die für deinen Lehrplan vorgesehen sind.

Lehrplan wählen

Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Nullform ax² + bx + c = 0. Mit Hilfe der Diskriminante D = b² − 4ac bekommt man die Antwort:

  • D > 0 ⇔ zwei Schnittstellen
  • D = 0 ⇔ eine Berührstelle
  • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte
Beispiel 1
Gegeben sind die Parabel p und die Gerade g mit folgenden Gleichungen:
p: y
=
1
3
 
x
2
5x
+
7
g: y
=
5
6
 
x
2
a) Ermittle rechnerisch, ob sich beide Graphen schneiden, berühren oder ob Sie keine gemeinsamen Punkte aufweisen.
b) Falls es gemeinsame Punkte gibt: ermittle diese!
Beispiel 2
- - - a) - - -
Gegeben sind eine Parabelschar 
p
a
 und eine Gerade g durch
p
a
 
x
=
ax
2
2x
+
1
g
 
x
=
3x
4
Gib jeweils den Wert oder die Werte für a an, bei dem sich 
p
a
 und g schneiden/berühren/weder schneiden noch berühren.

- - - b) - - -
Gegeben sind eine Parabel p und eine Geradenschar 
g
m
 durch
p
x
=
1
2
 
x
1
2
+
2
g
m
 
x
=
mx
2
Bestimme m so, dass sich Parabel und Gerade berühren.

Die Graphen zweier quadratischer Funktionen (Parabeln) oder einer quadratischen und einer linearer Funktion (Parabel und Gerade) f und g können sich zweimal schneiden, einmal berühren oder auch keine gemeinsamen Punkte aufweisen. Um das herauszufinden, setzt man beide Funktionsterme gleich, also f(x) = g(x), und bringt die Gleichung in die Normalform x² + px + q = 0. Mit Hilfe der Diskriminante D = (p/2)² − q bekommt man die Antwort:

  • D > 0 ⇔ zwei Schnittstellen
  • D = 0 ⇔ eine Berührstelle
  • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte
Beispiel 1
Gegeben sind die Parabel r und die Gerade g mit folgenden Gleichungen:
r: y
=
1
3
 
x
2
5x
+
7
g: y
=
5
6
 
x
2
a) Ermittle rechnerisch, ob sich beide Graphen schneiden, berühren oder ob Sie keine gemeinsamen Punkte aufweisen.
b) Falls es gemeinsame Punkte gibt: ermittle diese!
Beispiel 2
- - - a) - - -
Gegeben sind eine Parabelschar 
p
a
 und eine Gerade g durch
p
a
 
x
=
ax
2
2x
+
1
g
 
x
=
3x
4
Gib jeweils den Wert oder die Werte für a an, bei dem sich 
p
a
 und g schneiden/berühren/weder schneiden noch berühren.

- - - b) - - -
Gegeben sind eine Parabel p und eine Geradenschar 
g
m
 durch
p
x
=
1
2
 
x
1
2
+
2
g
m
 
x
=
mx
2
Bestimme m so, dass sich Parabel und Gerade berühren.
Eine Gleichung kann graphisch gelöst werden, indem man beide Seiten der Gleichung als Funktionsterm betrachtet und die zugehörigen Graphen zeichnet. Die Stellen, wo sie sich schneiden bzw. berühren, sind die Lösungen der Gleichung. Keine gemeinsamen Punkte dagegen heißt keine Lösung.
Beispiel
Löse graphisch:
0,5x
2
1
=
1,5x
2

Eine Lösung der Gleichung f(x) = h(x) kann als Schnitt- oder Berührstelle der beiden Graphen Gf und Gh interpretiert werden. Eine Lösung der Gleichung f(x) = 0 kann als Schnitt- oder Berührstelle von Gf mit der x-Achse interpretiert werden.

Sofern die Gleichung quadratisch ist, kann man aus dem Vorzeichen der Diskriminante D auf die Anzahl der gemeinsamen Punkte schließen und umgekehrt:

  • D > 0 ⇔ zwei Schnittstellen
  • D = 0 ⇔ eine Berührstelle
  • D < 0 ⇔ weder Schnitt- noch Berührstelle, also keine gemeinsamen Punkte
Die Schnitt- und Berührpunkte (gemeinsame Punkte) zweier Graphen Gf und Gg ermittelt man durch Gleichsetzen ihrer Funktionsterme, also f(x) = g(x). Setze die Lösung der Gleichung in f(x) oder g(x) ein, um den zugehörigen y-Wert zu ermitteln.

Spezialfall f(x) = 0: Hier geht es um die gemeinsamen Punkte von Gf mit der x-Achse.

Beispiel
Bestimme die Schnittpunkte der beiden Parabeln p und q mit folgenden Gleichungen:
p
 
x
=
3
4
 
x
2
+
2x
10
q
 
x
=
1
4
 
x
2
+
1,5x
4
.
Eine quadratischen Funktion kann maximal zwei Nullstellen haben. Deren Bestimmung läuft auf das Lösen einer quadratischen Gleichung hinaus. Je nachdem, in welcher Form der Funktionsterm gegeben ist, wendet man die Lösungsformel (Mitternachtsformel oder p-q-Formel) an oder wählt ein leichteres Verfahren:
  • Scheitelpunktform: forme die Gleichung um in (x+...)2=... und radiziere dann auf beiden Seiten
  • Nullstellenform: die Nullstellen können ohne weitere Rechnung abgelesen werden