Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Ein negativer Exponent bedeutet, dass man den Kehrwert der Potenz mit positivem Exponenten bildet: \[ a^{-n} = \frac{1}{a^{n}} \qquad (a \ne 0) \] Der Exponent wird dabei positiv: \[ a^{-1} = \frac{1}{a}, \quad a^{-2} = \frac{1}{a^2}, \quad a^{-3} = \frac{1}{a^3}, \dots \]

    Einfaches Zahlenbeispiel:

    \[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \]
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 5 in Level 1
  • Rechne die Potenz aus.
  • 1
    2
    3
    =
    7
    2
    =
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema
Was bedeutet eine Potenz mit negativer Hochzahl, z.B. \(2^{-3}\)?
#1406
Ein negativer Exponent bedeutet, dass man den Kehrwert der Potenz mit positivem Exponenten bildet: \[ a^{-n} = \frac{1}{a^{n}} \qquad (a \ne 0) \] Der Exponent wird dabei positiv: \[ a^{-1} = \frac{1}{a}, \quad a^{-2} = \frac{1}{a^2}, \quad a^{-3} = \frac{1}{a^3}, \dots \]

Einfaches Zahlenbeispiel:

\[ 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \]
Beispiel

Bestimme das Ergebnis.

\(\displaystyle \left(\frac35\right)^{-3}\)