Hilfe
  • Allgemeine Hilfe zu diesem Level
    Wenn nichts anderes angegeben ist, gilt stets: Seite a liegt gegenüber Eckpunkt A, b liegt gegenüber B und c liegt gegenüber C. Zu den Eckpunkten A, B und C gehören die Winkel α, β und γ.
  • Hilfe zum Thema
    In einem gleichschenkligen Dreieck sind die Basiswinkel gleich groß.
    • Kennt man den Basiswinkel, so erhält man den Winkel gegenüber der Basis, indem man von 180° das Doppelte des Basiswinkels abzieht.
    • Kennt man dagegen den Winkel gegenüber der Basis, so muss man diesen von 180° abziehen und das Ergebnis halbieren, um den Basiswinkel zu bestimmen.
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Gegeben ist ein gleichschenkliges Dreieck ABC. Bestimme die gefragten Winkel, wenn bekannt ist, dass...
  • …b Basis ist und 
    α
    =
    37°.
    β
    =
     ▉ 
     
    °
    γ
    =
     ▉ 
     
    °
    Schritt 1 von 2
    Welche Skizze trifft zu?
     
    graphik
      
     
    graphik
       
     
    graphik
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Gleischenkliges und gleichseitiges Dreieck
Lernvideo

Gleischenkliges und gleichseitiges Dreieck

Kanal: Mathegym

Wie berechnet man die Winkel in einem gleichschenkligen Dreieck, wenn ein Winkel bekannt ist?
#176
In einem gleichschenkligen Dreieck sind die Basiswinkel gleich groß.
  • Kennt man den Basiswinkel, so erhält man den Winkel gegenüber der Basis, indem man von 180° das Doppelte des Basiswinkels abzieht.
  • Kennt man dagegen den Winkel gegenüber der Basis, so muss man diesen von 180° abziehen und das Ergebnis halbieren, um den Basiswinkel zu bestimmen.
Beispiel
graphik
ε=?
Was bedeutet "gleichschenklig" bei einem Dreieck und welche Bezeichnungen und äquivalenten Eigenschaften gibt es dazu?
#175
Ein Dreieck ist gleichschenklig, wenn zwei Seiten gleich lang sind. Folgende Bezeichnungen sind üblich:
  • Schenkel: die beiden Seiten, die gleich lang sind
  • Basis: Seite, von der beide Schenkel weggehen
  • Basiswinkel: Winkel, die an der Basis anliegen
  • Spitze: Ecke gegenüber der Basis
Äquivalent zu "gleichschenklig" sind die folgenden Eigenschaften:
  • achsensymmetrisch
  • zwei Winkel gleich groß (Basiswinkel)
Wie unterscheiden sich gleichseitige und gleichschenklige Dreiecke und welche Eigenschaften sind "gleichseitig" äquivalent?
#179
Ein spezielles gleichschenkliges Dreieck ist das gleichseitige Dreieck: Bei ihm sind nicht nur zwei, sondern alle drei Seiten gleich lang.

Äquivalent zu gleichseitig sind folgende Aussagen:

  • alle Winkel sind gleichgroß (jeweils 60°)
  • achsensymmetrisch bzgl. dreier unterschiedlicher Achsen