TIPP GeoGebra: Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.
Die Aufgaben aus diesem Level gehen über den Lehrplan hinaus oder sind Zusatzaufgaben.

Konstruiere wie beschrieben, gib dann als Kontrolle die geforderte Länge an. Ergebnis(se) mit 1 Dezimalstelle(n) Genauigkeit angeben - geringe Abweichungen vom richtigen Ergebnis werden toleriert!

  • Zeichne eine Strecke [BC] der Länge 5 cm. Ergänze diese zu einem Dreieck ABC mit b = 4 cm und Umkreisradius r = 3,5 cm.
    c ≈
     
    cm
    GeoGebra
    GeoGebra
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
  • Zeichne eine 5cm lange Strecke mit den Endpunkten B und C und ergänze zu einem Dreieck ABC mit b = 4 cm und Umkreisradius r = 3,5 cm. Um am Schluss die gesuchte Seite auszumessen, klicke auf das Kästchen oben rechts (cm).
  • Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Wie konstruiert man den Umkreis eines Dreiecks?
#505
Jeder Punkt auf der Mittelsenkrechten einer Strecke hat zu beiden Endpunkten der Strecke dieselbe Entfernung. Daher gilt folgender Satz:

Die drei Mittelsenkrechten eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt ist von allen drei Ecken gleich weit entfernt, ist also der Mittelpunkt des Umkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Umkreis.
graphik
Wie konstruiert man den Umkreis eines Dreiecks?
#506
Die Punkte der Winkelhalbierenden besitzen die Eigenschaft, dass sie zu beiden Schenkeln denselben Abstand haben. Daher gilt folgender Satz:

Die drei Winkelhalbierenden eines jeden Dreiecks schneiden sich in einem Punkt. Dieser Punkt hat von allen drei Seiten denselben Abstand, ist also der Mittelpunkt des Inkreises.

Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Inkreis.
graphik
Fällt man von einem Eckpunkt des Dreiecks das Lot auf die gegenüberliegende Seite, so erhält man die Höhe der entsprechenden Seite. In jedem Dreieck schneiden sich alle drei Höhen (evtl. verlängert) in einem Punkt.
Beispiel
Gegeben ist das folgende Dreieck. Konstruiere den Höhenschnittpunkt.
graphik