Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Exponentielles Wachstum - Anwendungen, Matheübungen
Sachaufgaben (Textaufgaben) zum exponentiellen Wachstum - Lehrplan für 5.-11. Klasse
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Beispielaufgabe
+Video
Wachstumsrate = Wachstumsfaktor a − 1
Nimmt ein Bestand pro Zeitschritt
um
20% (= Rate) zu, so hat er sich
auf
120% (= a) des ursprünglichen Bestands vergößert.
Nimmt ein Bestand pro Zeitschritt
um
20% (Rate) ab, so hat er sich
auf
80% (= a) des ursprünglichen Bestands verringert.
Ansonsten bedenke, dass 80% = 0,8 und 120% = 1,2.
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Bestimme den Wachstumsfaktor a. Gib evtl. auftretende Brüche in der Form "a/b" bzw. "-a/b" an.
Vermögenswachstum bei einem Jahreszinssatz von 4,5% (mit Zinseszins):
a
=
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Stoff zum Thema (+Video)
Was bleibt beim exponentiellen Wachstum gleich und wie geht man bei typischen Fragestellungen vor?
#724
Exponentielles Wachstum:
Zunahme pro Zeitschritt ist - prozentual - immer gleich, d.h.
B(n + 1) = B(n) · k.
B(n) gesucht:
Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel:
B(n) = B(0) · k
n
n gesucht:
Ist n gesucht, löst man die Formel nach n auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
| log
log( B(n) / B(0) ) = log( k
n
)
log( B(n) / B(0) ) = n · log( k ) | : log( k )
n = log( B(n) / B(0) ) / log( k )
B(0) gesucht:
Ist B(0) gesucht, löst man die Formel nach B(0) auf:
B(n) = B(0) · k
n
| : k
n
B(0) = B(n) / k
n
k gesucht:
Ist k gesucht, löst man die Formel nach k auf:
B(n) = B(0) · k
n
| : B(0)
B(n) / B(0) = k
n
Zuletzt zieht man noch die n-te Wurzel
Beispiel 1
Ein Kapital von 2000 € vermehrt sich auf einem Sparkonto pro Jahr um 0,1%.
Nach 8 Jahren beträgt das Kapital auf dem Konto:
?
Euro
?
Cent
Beispiel 2
Ein Guthaben von 5000 € wird mit 3,7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen?
Nach ? Jahren beträgt das Guthaben 8000 €.
Wie hängen Wachstumsrate und Wachstumsfaktor beim exponentiellen Wachstum zusammen?
#345
Wachstumsrate = Wachstumsfaktor a − 1
Nimmt ein Bestand pro Zeitschritt
um
20% (= Rate) zu, so hat er sich
auf
120% (= a) des ursprünglichen Bestands vergößert.
Nimmt ein Bestand pro Zeitschritt
um
20% (Rate) ab, so hat er sich
auf
80% (= a) des ursprünglichen Bestands verringert.
Ansonsten bedenke, dass 80% = 0,8 und 120% = 1,2.
Beispiel
Wie lautet der Wachstumsfaktor (bezogen auf das angegebene Zeitintervall)
bei einer monatlichen Zunahme um die Hälfte
bei einer jährlichen Abnahme um ein Viertel
bei einem täglichen Rückgang um 1,5%
Wie beschreibt man die Änderung des Bestandes bei einem Wachstumsvorgang von einem Zeitschritt zum nächsten?
#719
Bei einem Wachstumsvorgang kann man die Änderung des Bestandes von einem Zeitschritt n auf den nächsten auf zwei Arten beschreiben.
1. absolute Änderung: B(n+1) – B(n)
2. relative (prozentuale Änderung): (B(n+1) – B(n)) / B(n)
Beispiel
2010 lebten in Berlin 3.460.725 Menschen, 2011 waren es 3.326.002. Im Jahr 2012 betrug die Einwohnerzahl von Berlin 3.375.222.
Berechne jeweils die absolute und die relative Änderung.
Runde, falls nötig, auf die zweite Nachkommastelle.
von 2010 nach 2011
von 2011 nach 2012
absolute Änderung
?
?
relative Änderung (in %)
?
?
Was ist der allgemeine Term einer Exponentialfunktion und welche Bedeutung haben die Parameter?
#350
Funktionen mit der Gleichung f(x) = b · a
x
heißen
Exponentialfunktionen
. Dabei ist
a > 0 der Wachstumsfaktor und
b = f(0) der Anfangsbestand
Beispiel
Ein zu festem Jahreszinssatz angelegtes Kapital ist innerhalb von 10 Jahren auf 300% angewachsen. Wie hoch ist der Zinsatz?
Titel
×
...
Schließen
Speichern
Abbrechen