Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Funktionsuntersuchung - exp und ln, Matheübungen
Funktionen und Funktionsscharen, die exp oder ln enthalten, hinsichtlich D
max
, Nullstellen, Verhalten im Unendlichen, Symmetrie des Graphen zum KOSY, relativen Hoch- und Tiefpunkten und weiterer Aspekte untersuchen.
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Beispielaufgabe
+Video
TIPP
Beispiel-Aufgabe:
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.
Löse die Aufgabe Schritt für Schritt.
Zwischenschritte aktiviert
Gegeben ist die für x∈ℝ definierte Funktion f mit
f
x
=
x
−
1
·
e
0,5x
.
a) Wie verhält sich die Funktion im Unendlichen?
b) Gib alle Nullstellen an.
c) Bestimme alle relativen Hoch- und Tiefpunkte von
G
f
.
d) Berechne f(-5), f(0) und f(2) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
5
≤
x
≤
2
.
e) Die Tangente an
G
f
an der Stelle
x
=
0
bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
Schritt 1/8
Zu a)
l i m
x→∞
f
x
=
l i m
x→−∞
f
x
=
Hinweis: klicke das Tastatur-Symbol an, um ∞ eingeben zu können.
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Checkos: 0 max.
Ergebnis prüfen
Wenn du ein Benutzerkonto hast,
logge dich bitte zuvor ein.
Stoff zum Thema (+Video)
Beispiel 1
Gegeben ist die für x∈ℝ definierte Funktion f mit
f
x
=
2
−
3x
·
e
−
x
.
a) Wie verhält sich die Funktion im Unendlichen?
b) Gib alle Nullstellen an.
c) Bestimme alle relativen Hoch- und Tiefpunkte.
d) Berechne f(-0,5), f(0) und f(4) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
−
0,5
≤
x
≤
4
.
e) Die Tangente an
G
f
an der Stelle
x
=
0
bildet mit den Koordinatenachsen ein Dreieck. Bestimme dessen Fläche.
Beispiel 2
Gegeben ist die Schar von Funktionen
f
k
mit
f
k
x
=
x
·
e
1
−
x
k
, Definitionsmenge
D
f
=
ℝ
und
k
∈
ℝ
+
. Der Graph von
f
k
wird mit
G
k
bezeichnet.
a) Gib die Nullstellen und das Verhalten von
f
k
für x→±∞ an.
b) Bestimme Lage und Art des Extrempunkts von
G
k
in Abhängigkeit von k.
c) Begründe, dass die Extrempunkte aller Graphen der Schar auf einer Halbgerade liegen, und beschreibe die Lage dieser Halbgerade im Koordinatensystem.
d) Weise nach, dass alle Graphen der Funktionenschar im Ursprung die gleiche Tangente besitzen, und gib eine Gleichung dieser Tangente an.
e) Bestimme den Wert für
k
so, dass
G
k
durch den Punkt
6
|
6
e
2
verläuft, und zeichne den Graphen der zugehörigen Scharfunktion unter Berücksichtigung der bisherigen Ergebnisse.
Beispiel 3
Gegeben ist die Funktion f mit
f
x
=
e
·
ln
x
x
2
und maximalem Definitionsbereich
D
f
. Der Graph von f wird mit
G
f
bezeichnet.
a) Gib
D
f
an.
b) Ermittle das Verhalten von f an den Rändern der Definitionsmenge.
c) Berechne alle Nullstellen von f.
d) Bestimme Lage und Art aller Extrempunkte von
G
f
.
e) Berechne f(8) und zeichne
G
f
auf der Grundlage aller bisherigen Ergebnisse im Intervall
0
<
x
≤
8
.
f) Gib die Wertemenge von f an.
Beispiel
f
t
x
=
e
x
3
−
x
+
t
Bestimme den Parameterwert t so, dass die Tangente an
G
t
im Punkt (1 | ?) die Steigung
1
4
hat.
Beispiel
f
x
=
x
·
e
−
x
x
+
1
Bestimme
die maximale Definitionsmenge
D
max
die Nullstelle(n)
das Verhalten von f an den Rändern von
D
max
das Monotonieverhalten von f und die relativen Extrempunkte
Skizziere schließlich den Graphen von f unter Einbezug aller Teilergebnisse.
Mathe-Aufgaben passend zu deinem Lehrplan
Wir zeigen dir exakt die Mathe-Übungen, die für deinen Lehrplan bzw. Bundesland vorgesehen sind. Wähle dazu bitte deinen Lehrplan.
Lehrplan wählen
Titel
×
...
Schließen
Speichern
Abbrechen