Hilfe
  • Hilfe zum Thema
    • Achsensymmetrie zur y-Achse:
    • Für alle x aus dem Definitionsbereich gilt:
      f(x) = f(-x)

    • Punktsymmetrie zum Ursprung:
    • Für alle x aus dem Definitionsbereich gilt:
      -f(x) = f(-x)

    • Spezialfall: ganzrationale Funktionen

    • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
      Also gilt:
      Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

      -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
      Also gilt:
      Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.

    • Hinweis:
    • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
    • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 1
  • Untersuche, ob der Graph der Funktion symmetrisch zur y-Achse oder symmetrisch zum Ursprung des Koordinatensystems (KOSY) ist.
  • f
     
    x
    =
    2x
    x
    2
    3
    Der Graph
    ist symmetrisch zur y-Achse.
    ist symmetrisch zum Ursprung.
    ist weder symmetrisch zur y-Achse noch zum Ursprung.
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt die Aufgabe als nicht gelöst und die Bewertung deiner Leistung für diesen Level verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Wie erkennt man Achsen- und Punktsymmetrie bei Funktionen, insbesondere bei ganzrationalen Funktionen?
#758
  • Achsensymmetrie zur y-Achse:
  • Für alle x aus dem Definitionsbereich gilt:
    f(x) = f(-x)

  • Punktsymmetrie zum Ursprung:
  • Für alle x aus dem Definitionsbereich gilt:
    -f(x) = f(-x)

  • Spezialfall: ganzrationale Funktionen

  • f(x) = f(-x) gilt genau dann, wenn nur gerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit geraden Hochzahlen, so ist der Graph der Funktion achsensymmetrisch zur y-Achse.

    -f(x) = f(-x) gilt genau dann, wenn nur ungerade Exponenten auftauchen.
    Also gilt:
    Hat eine ganzrationale Funktion nur x-Potenzen mit ungeraden Hochzahlen, so ist der Graph der Funktion punktsymmetrisch zum Ursprung.

  • Hinweis:
  • Die einzige Funktion deren Graph sowohl achsensymmetrisch zur y-Achse also auch punktsymmetrisch zum Ursprung ist, ist f(x)=0.
Was versteht man unter einer behebbaren Definitionslücke?
#325
Eine Definitionslücke ist (anders als bei einer Polstelle) behebbar, wenn der "problematische" Faktor im Nenner herausgekürzt werden kann. Zur näheren Bestimmung von Nullstellen, Polstellen und (evtl. behebbaren) Definitionslücken sollte man also wie folgt vorgehen:
  1. Zähler und Nenner so weit wie möglich faktorisieren
  2. Definitionsmenge bestimmen: ALLE auftretenden Faktoren im Nenner, die Null werden können, liefern eine Definitionslücke (ganz gleich, ob man sie herauskürzen kann oder nicht)
  3. Definitionslücken näher spezifizieren: behebbar, wenn herauskürzbar; ansonsten Polstelle
  4. Nullstellen bestimmen: nur solche Faktoren im Zähler, die nicht herausgekürzt werden können, liefern Nullstellen der Funktion.
Beispiel
Bestimme evtl. auftretende Nullstellen und Definitionslücken und charakterisiere diese näher.
f(x)
=
4
6x
9x
3
4x
Beispiel
Untersuche die folgende rationale Funktion hinsichtlich evtl. Defintionslücken, Polstellen, Nullstellen sowie Asymptoten und skizziere anhand der gewonnenen Informationen den Graph.
f(x)
=
2x
3
8x
6x
2
3x
3