Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Geometrie - besondere Linien, Matheübungen
Mittelsenkrechte, Lot und Winkelhalbierende in Anwendungssituationen - Lehrplan für 12. Klasse
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen
TIPP
GeoGebra:
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen. Klicke unten rechts auf das orange GeoGebra-Symbol, um die Aufgabe mit Hilfe von GeoGebra zu bearbeiten.
Welche Konstruktionen führen zur Lösung?
Zwischenschritte aktivieren
Gesucht sind alle Punkte, die von g und h denselben Abstand haben und gleichzeitig von A und B gleich weit entfernt sind. Man erhält die Lösung durch folgende Konstruktionen:
genau eine Winkelhalbierende
genau zwei Winkelhalbierende
Mittelsenkrechte von [AB]
Höhe im Dreieck ASB
Es ergibt sich als Lösung:
genau ein Punkt
mehrere, aber endlich viele Punkte
unendlich viele Punkte
GeoGebra
GeoGebra
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
GeoGebra-Editor
Für diese Aufgabe steht dir GeoGebra zur Verfügung. Damit kannst du Konstruktionen direkt am Bildschirm durchführen.
Geogebra-Editor anzeigen
Gesucht sind alle Punkte, die von g und h denselben Abstand haben und gleichzeitig von A und B gleich weit entfernt sind.
Wenn du mit der Konstruktion fertig bist, scrolle zurück nach oben und gib bei der Aufgabe das passende Ergebnis ein.
Zum Ändern der Größe gestrichelte Linie ziehen
Stoff zum Thema
Wie bestimmt man die Entfernung von einem Punkt zu einer Geraden und die Lage von Punkten mit gleicher oder bestimmter Entfernung zu geometrischen Objekten?
#824
Die kürzeste Entfernung eines Punktes P zu …
… einem anderen Punkt Q misst man entlang der Strecke von P nach Q.
… einer Geraden g misst man entlang des Lots zu g durch P.
Punkte mit gleicher Entfernung zu …
… zwei Punkten A und B liegen auf der Mittelsenkrechten von A und B.
… zwei sich schneidenden Geraden g und h liegen auf den beiden Winkelhalbierenden von g und h.
Punkte mit einem bestimmten Abstand d zu …
… einem Punkt A liegen auf dem Kreis um A mit Radius d.
… einer Geraden g liegen auf den beiden Parallelen zu g im Abstand d.
Titel
×
...
Schließen
Speichern
Abbrechen