Kostenlos testen
Preise
Für Schüler & Eltern
Für Lehrer & Schulen
Anmelden
Koordinatengeometrie im Raum - Geraden - gegenseitige Lage, Matheübungen
Bestimmung der Lagebeziehung zweier Geraden (identisch/echt parallel, sich schneidend oder windschief). - Lehrplan G9 (5.-13. Klasse) - 61 Aufgaben in 10 Levels
Abbruch - Keine Zugriffsberechtigung
Hilfe
Beispiel
Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
Beispielaufgabe
+Video
ansehen
Hilfe zum Thema
Um zwei Geraden g und h hinsichtlich ihrer Lage zueinander zu untersuchen, betrachtet man zunächst ihre Richtungsvektoren.
Sind diese linear abhängig, so sind g und h identisch oder parallel zueinander. Zur Unterscheidung prüft man, ob z.B. der Aufpunkt von g auf h liegt (wenn ja:identisch, ansonsten echt parallel).
Sind die Richtungsvektoren linear unabhängig, so setzt man beide Geraden gleich und betrachtet das entstehende Gleichungssystem (drei Gleichungen, zwei unbekannte Parameter). Lässt es sich eindeutig lösen, so schneiden sich g und h in einem Punkt S. Andernfalls (unlösbar) liegen g und h windschief zueinander.
Weitere Hilfethemen
FAQ zum Aufgabenbereich und zur Bedienung
Aufgabe
Aufgabe
1 von 6
in Level 6
Die Richtungsvektoren der Geraden g und h sind nicht parallel. Untersuche, ob die beiden Geraden sich schneiden oder windschief sind und bestimme gegebenenfalls den Schnittpunkt. (Falls sich die Geraden nicht schneiden, gib für alle Koordinaten "!" ein.)
Zwischenschritte aktiviert
g
:
X
=
4
−
1
9
+
t
·
−
3
2
3
h
:
X
=
11
−
3
4
+
t
·
5
−
2
−
4
Schnittpunkt:
P
▉
|
▉
|
▉
Schritt 1 von 3
Setze g und h gleich.
(Da in beiden Gleichungen der Parameter t vorkommt, ersetze ihn in g durch s.)
Geordnet und zusammengefasst ergibt sich das lineare Gleichungssystem:
I:
·
s
−
5
·
t
=
II:
2s
+
·
t
=
III:
·
s
+
·
t
=
−
5
Ergebnis prüfen
keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
∞
<
>
!
α
β
γ
δ
ε
η
λ
μ
π
σ
φ
ω
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Lösung anzeigen
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die
Beispiel-Aufgabe
zu diesem Aufgabentyp an.
Lösung anzeigen
Abbrechen
Stoff zum Thema (+Video)
Stoff zum Thema anzeigen
Welche Vektoren kommen in der Parameterform einer Geraden vor und welche Bedeutung haben sie?
#596
Bei einer Gleichung in Parameterform wird der Ortsvektor zu einem Aufpunkt (Stützvektor) und ein Richtungsvektor der Geraden angegeben. Der Ortsvektor "verankert" die Gerade im Koordinatensystem, der Richtungsvektor gibt ihre Richtung vor. Weder der Orts- noch der Richtungsvektor sind eindeutig festgelegt.
Beispiel
Gegeben ist die Gerade g
:
X
=
2
2
−
3
+
μ
·
−
1
1
2
.
(a) Gib für g eine andere Gleichung in Parameterform an, die weder im Ortsvektor noch im Richtungsvektor mit der Gleichung oben übereinstimmt.
(b) Gib eine Gleichung an für die Gerade h, die parallel zu g ist und durch den Punkt (1|2|-5) geht.
(c) Gib eine Gleichung an für eine Gerade i, die senkrecht zu g steht und g in einem beliebigen Punkt schneidet.)
Wie bestimmt man die Lagebeziehung zweier Geraden im Raum und wie erfolgt die rechnerische Ermittlung?
#597
Um zwei Geraden g und h hinsichtlich ihrer Lage zueinander zu untersuchen, betrachtet man zunächst ihre Richtungsvektoren.
Sind diese linear abhängig, so sind g und h identisch oder parallel zueinander. Zur Unterscheidung prüft man, ob z.B. der Aufpunkt von g auf h liegt (wenn ja:identisch, ansonsten echt parallel).
Sind die Richtungsvektoren linear unabhängig, so setzt man beide Geraden gleich und betrachtet das entstehende Gleichungssystem (drei Gleichungen, zwei unbekannte Parameter). Lässt es sich eindeutig lösen, so schneiden sich g und h in einem Punkt S. Andernfalls (unlösbar) liegen g und h windschief zueinander.
Beispiel
g
:
X
=
1
−
1
5
+
μ
·
−
3
4
2
h
:
X
=
1
3
−
2
+
μ
·
6
8
−
4
i
:
X
=
0
−
3
14
+
μ
·
1
−
2
1
k
:
X
=
−
2
3
7
+
μ
·
2
−
8
3
−
4
3
Untersuche, wie die Gerade g zu den anderen Geraden liegt.
Titel
×
...
Schließen
Speichern
Abbrechen