Hilfe
  • Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine Substitution vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (Re- / Rücksubstitution).
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Löse die Gleichung durch Substituieren. Trage "!" in übrig bleibende Felder ein. Ergebnis(se) falls erforderlich auf die 4. Dezimalstelle gerundet eingeben!

  • e
    2x
    6e
    x
    +
    5
    =
    0
    x
    1
    =
    x
    2
     
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Wie funktioniert die Substitutionsmethode in der Mathematik?
#486
Beim Lösen einer Gleichung mit der Unbekannten x kann es hilfreich sein, eine Substitution vorzunehmen. Man ersetzt dabei einen geeigneten x-Term (z.B. x²) durch eine neue Variable, z.B. "z", so dass die Gleichung gelöst werden kann. Wenn man die Lösung(en) für z kennt, findet man die Lösungen für x leicht heraus (Re- / Rücksubstitution).
Beispiel
Löse die Gleichung
 
x
4
6x
2
+
8
=
0
Wie kann die Polynomdivision zur Bestimmung der Nullstellen einer ganzrationalen Funktion 3. Grades oder höher eingesetzt werden?
#783

Das Verfahren der Polynomdivision kann helfen, die Nullstellen einer ganzrationalen Funktion 3. Grades (oder höher) zu bestimmen. Dabei wird die Funktion in ein Produkt aus einem Linearfaktor und einem quadratischen Term umgeschrieben.

Vorgehen:

Gesucht sind die Nullstellen der Funktion f mit f(x)=ax³+bx²+cx+d.
Also muss die Gleichung ax³+bx²+cx+d=0 gelöst werden.

  1. Erraten einer Nullstelle x0
    Falls keine Nullstelle bekannt ist, muss man eine Nullstelle erraten. Dazu setzt man testweise ein paar kleine ganze Zahlen wie 0, 1, 2, -1, ... für x in die Funktion ein. Ist das Ergebnis Null, so hat man eine Nullstelle gefunden.

  2. Polynomdivision
    Der Funktionsterm wird durch den Linearfaktor (x−x0) (also "x minus erste Nullstelle") geteilt. Das Ergebnis der Polynomdivision ist ein quadratischer Term q(x). Der ursprüngliche Funktionsterm kann also jetzt als Produkt geschrieben werden:
    f(x)=q(x)·(x−x0)

  3. Lösen der quadratischen Gleichung
    Aus der Gleichung q(x)=0 gewinnt man z.B. mit der pq-Formel bis zu zwei weitere Nullstellen für f(x).
Beispiel
Die Funktion f mit
f(x)
=
x
3
x
2
8x
+
12
hat die Nullstelle
x
0
=
2
Bestimme die weiteren Nullstellen.
x
1
=
?
 
die kleinere
x
2
=
?
 
die größere