Hilfe
  • Die mittlere Änderungsrate einer Funktion f im Intervall [a; b] ergibt sich durch

    [ f(b) − f(a) ] / ( b − a)

    Aufgrund seiner Struktur nennt man diesen Term auch Differenzenquotient.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Gegeben ist die Funktion f. Bestimme jeweils mit Hilfe des Differenzenquotienten die mittlere Änderungsrate im gegebenen Intervall. Ergebnis(se) falls erforderlich auf die 4. Dezimalstelle gerundet eingeben!

  • f(x)
    =
    3x
    2
    4x
    +
    1
    Intervall [0;10]
    Mittlere Änderungsrate:
     
    Intervall [9;10]
    Mittlere Änderungsrate:
     
    Intervall: [9,9;10]
    Mittlere Änderungsrate:
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Mittlere und lokale Änderungsrate - Teil 1
Lernvideo

Mittlere und lokale Änderungsrate - Teil 1

Kanal: Mathegym
Mittlere+lokale Änderungsrate - Teil 2
Lernvideo

Mittlere+lokale Änderungsrate - Teil 2

Kanal: Mathegym
Mittlere+lokale Änderungsrate - Teil 3
Lernvideo

Mittlere+lokale Änderungsrate - Teil 3

Kanal: Mathegym

Wie berechnet man die mittlere Änderungsrate einer Funktion und welcher synonyme Begriff ist dafür gebräuchlich?
#396
Die mittlere Änderungsrate einer Funktion f im Intervall [a; b] ergibt sich durch

[ f(b) − f(a) ] / ( b − a)

Aufgrund seiner Struktur nennt man diesen Term auch Differenzenquotient.
Beispiel
(1) Maximilian war Ende Januar 1,35 m groß und Ende Juni 1,37 m. Wie groß ist in diesem Zeitraum die durchschnittliche Änderungsrate?
(2) Wie groß ist die durchschnittliche Änderungsrate der Normalparabel mit Scheitel im Ursprung im Intervall [3;7]?
Wie lassen sich die mittlere und lokale Änderungsrate graphisch interpretieren?
#397
Graphisch lässt sich die mittlere Änderungsrate im Intervall [a; b] als Steigung der Geraden (Sekante) durch die entsprechenden Punkte des Graphen veranschaulichen.

Die lokale Änderungsrate an der Stelle x = a ist folglich die Steigung der Geraden (Tangente), die den Graph im entsprechenden Punkt berührt. Man stelle sich zum besseren Verständnis ein winziges Intervall [a; b] und die zugehörige Sekante vor. Lässt man das Intervall weiter schrumpfen, also b gegen a gehen, wird aus der Sekante eine Tangente.

Beispiel
Schätze die mittlere Änderungsrate im angegebenen Intervall bzw. die lokale Änderungsrate an der gegebenen Stelle ab.
graphik
Intervall [-1; 5]:       
 
m
 
≈ ?
Stelle x
0
=
4:       
 
m ≈ ?
Wie bestimmt man die lokale Änderungsrate einer Funktion f an der Stelle x_0 mit Differenzenquotienten?
#844

Man kann auch die lokale Änderungsrate einer Funktion f an der Stelle x0 mit Hilfe geeigneter Differenzenquotienten bestimmen. Man berechnet dazu

[ f(x) − f(x0) ] / (x − x0)

für x-Werte, die sich von links und von rechts an x0 annähern. Erläuterung: die zugehörigen Sekanten gleichen dadurch immer mehr der Tangente an der Stelle x=x0.

Wie ist der Zusammenhang zwischen dem Differenzenquotienten und der lokalen Änderungsrate?
#640
Rechnerisch ergibt sich die lokale Änderungsrate an der Stelle x = a, indem man den Grenzwert des Differenzenquotienten

[ f(a+h) − f(a) ] / h

für h → 0 (h ≠ 0) bestimmt. Diesen Grenzwert (sofern er existiert) nennt man Differentialquotient.
Beispiel
Berechne die lokale Änderungsrate an der Stelle a.
f(x)
=
2
x
x
;
a
=
2
Was ist der Differentialquotient und wie wird er berechnet?
#398
Rechnerisch ergibt sich die lokale Änderungsrate an der Stelle x = a, indem man den den Grenzwert des Differenzenquotienten

[ f(x) − f(a) ] / (x − a)

für x → a (x ≠ a) bestimmt. Diesen Grenzwert (sofern er existiert) nennt man Differentialquotient.
Beispiel
Berechne die lokale Änderungsrate an der Stelle x0.
f(x)
=
2
x
x
;
x
0
=
2