Hilfe
  • Beispiel
    Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe:
  • Hilfe zum Thema
    Die Gleichung einer quadratischen Funktion bzw. Parabel kann von jeder Form aus in jede andere Form umgewandelt werden:
    • Allgemeine Form ⇒ Scheitepunktform: mittels quadratischer Ergänzung
    • Allgemeine Form ⇒ Nullstellenform: mittels Nullstellenbestimmung, z.B. mit Hilfe der Miternachts- oder der p-q-Formel
    • Scheitelpunktform ⇒ allgemeine Form: Ausmultiplizieren (binomische Formel) und vereinfachen
    • Scheitelpunktform ⇒ Nullstellenform: mittels Nullstellenbestimmung, wobei hier keine Lösungsformel notwendig ist
    • Nullstellenform ⇒ allgemeine Form: Ausmultiplizieren und vereinfachen
    • Nullstellenform ⇒ Scheitelpunktform: xS ergibt sich als Mittelwert der Nullstellen, yS durch Einsetzen von xS in den Funktionsterm
  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 6
  • Bringe die Parabelgleichung in die geforderte Form. Brüche sind in der Form a/b einzutragen.
  • p: y
    =
    5x
    ·
    x
    +
    4
    =
     ▉ 
    ·
    x
     ▉ 
    2
     ▉ 
    Schritt 1 von 4
    Gegebene Form:
    Erwünschte Form:
  • keine Berechtigung
Beispiel
Beispiel-Aufgabe
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Schau dir vor dem Anzeigen der Lösung die Beispiel-Aufgabe zu diesem Aufgabentyp an.
Stoff zum Thema (+Video)
Welche Formen einer Parabelgleichung gibt es und wie wandelt man diese um?
#236
Man unterscheidet bei einer Parabel zwischen
  • Allgemeiner Form   y = ax² + bx + c   ⇒ Ablesen des Schnittpunkts mit der y-Achse (0;c)
  • Scheitelpunktform   y = a (x - xS)² + yS   ⇒ Ablesen des Scheitels S

Von der allgemeinen Form ausgehend erhält man die Scheitelpunktform mithilfe der quadratischen Ergänzung.

Beispiel 1
Gegeben ist die Parabel mit der Gleichung
y
=
1
3
 
x
2
6x
+
30
Die Parabel hat den Scheitel:
S
 
?
 
|
 
?
Beispiel 2
Bringe 
y
=
1
4
 
x
2
2x
+
1
 in Scheitelpunktform und gib den Scheitel an.
Welche drei Darstellungsformen gibt es für quadratische Funktionen und wie werden sie beschrieben?
#923
Bei der Gleichung einer quadratischen Funktion bzw. Parabel unterscheidet man folgende Formen:
  1. Allgemeine Form:
    y=ax²+bx+c
    Hieraus lässt sich der Schnittpunkt mit der y-Achse (0|c) ablesen.
     
  2. Scheitelpunktform:
    y=a·(x−xS)²+yS
    Hieraus lässt sich der Scheitelpunkt S(xS|yS) ablesen.
     
  3. Nullstellenform (Produktform/faktorisierte Form):
    y=a·(x−x1)·(x−x2)
    Hieraus lassen sich die Nullstellen x1 und x2 ablesen.
Beispiel
Stelle, soweit ablesbar, passende Funktionsterme für die Parabeln f und g auf.
graphik
Wie wandelt man die Darstellungsformen einer quadratischen Funktion ineinander um?
#924
Die Gleichung einer quadratischen Funktion bzw. Parabel kann von jeder Form aus in jede andere Form umgewandelt werden:
  • Allgemeine Form ⇒ Scheitepunktform: mittels quadratischer Ergänzung
  • Allgemeine Form ⇒ Nullstellenform: mittels Nullstellenbestimmung, z.B. mit Hilfe der Miternachts- oder der p-q-Formel
  • Scheitelpunktform ⇒ allgemeine Form: Ausmultiplizieren (binomische Formel) und vereinfachen
  • Scheitelpunktform ⇒ Nullstellenform: mittels Nullstellenbestimmung, wobei hier keine Lösungsformel notwendig ist
  • Nullstellenform ⇒ allgemeine Form: Ausmultiplizieren und vereinfachen
  • Nullstellenform ⇒ Scheitelpunktform: xS ergibt sich als Mittelwert der Nullstellen, yS durch Einsetzen von xS in den Funktionsterm
Beispiel
Allgemeine Form - Scheitelpunktform - Nullstellenform: Wandle jeweils von der gegebenen in die beiden anderen Formen um.
a) 
y
=
1
3
 
x
+
1
2
2
b) 
y
=
1
2
 
x
2
5x
+
8
c) 
y
=
3
·
x
2
·
x
+
1