Der Heron-Algorithmus ist ein Verfahren, mit dem sich √a, also die Wurzel von a für a∈Q+, mit zunehmender Genauigkeit bestimmen lässt.
(√a)2 = a.
Die Zahl unter der Wurzel nennt man Radikand.
a2 = a · a
√(a²) = | a |
Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben
√(a²) = −a