Nicht differenzierbar an der Stelle x0 kann z.B. bedeuten, dass der Graph einen Knick aufweist (blau) oder an der Stelle x0 überhaupt nicht definiert ist (rot), wie hier für x0 = -3 illustriert. Im Fall "blau" existieren aber die einseitigen Grenzwerte des Differenzialquotienten ("einseitige Tangentensteigungen"), nämlich 0 (linksseitig) und -3/2 (rechtsseitig).
m = f ´ (x0)
Der Steigungswinkel 0°≤α<180° einer Geraden bezeichnet die Größe des Winkels, um den g gegenüber der x-Achse gedreht ist. Für 0°<α<90° handelt es sich um eine steigende, für 90°<α<180° um eine fallende Gerade.
m=tan(α)
Beachte: wenn m gegeben und α gesucht ist, rechnet man zunächst tan-1(m) aus. Ist das Ergbnis positiv, hat man damit α ermittelt. Ist es negativ, addiert man noch 180° hinzu.
mT·mN=−1