Hilfe
  • Hilfe zum Thema
    Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

    (a + b) · (c + d) = ac + ad + bc + bd

  • Weitere Hilfethemen

Aufgabe

Aufgabe 1 von 6 in Level 9
  • Multipliziere aus und vereinfache so weit wie möglich. Variablenpotenzen sind in der Form "a^n" anzugeben.
  • t
    +
    8
    2
    3
    4t
    2
    =
     ▉ 
    Schritt 1 von 4
    Quadriere und fasse zusammen:
    t
    +
    8
    2
    =
  • keine Berechtigung
Hilfe
Hilfe
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Lösung
Achtung
Du hast noch keinen eigenen Lösungsversuch gestartet. Sobald du auf »Lösung anzeigen« klickst, gilt der Zwischenschritt als nicht gelöst und die Bewertung deiner Leistung für diese Aufgabe verschlechtert sich. Tipp: Sieh dir vor dem Anzeigen der Lösung die Hilfe zu dieser Aufgabe an.
Stoff zum Thema (+Video)
Was sind die drei binomischen Formeln und wofür werden sie verwendet?
#264

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel 1
Multipliziere.
a
+
1
2
=
?
3
b
2
=
?
11
+
c
·
11
c
=
?
Beispiel 2
Multipliziere.
3
7
+
y
2
=
?
1,5x
2
3
2
=
?
q
2
+
1
6
·
q
2
1
6
=
?
Beispiel 3
Berechne mithilfe der binomischen Formeln ohne Taschenrechner:
53
2
=
?
29
2
=
?
38
·
42
=
?
Beispiel 4
Vereinfache soweit wie möglich.
2c
5d
2
c
5
·
3d
=
?
Was sind die rückwärts gerichteten binomischen Formeln und wie werden sie angewendet?
#266

Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

  1. a² + 2ab + b² = (a + b)²
  2. a² − 2ab + b² = (a − b)²
  3. a² − b² = (a + b) (a − b)

In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.

Beispiel
Faktorisiere (wenn möglich).
49x
2
4
9
=
?
Beispiel
Ergänze:
20y
+
4y
2
=
2
Wie löst man zwei eingeklammerte Terme auf, die jeweils nur Plusrechnungen enthalten und miteinander multipliziert werden?
#123
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd