Hilfe
  • Stell dir die zugehörigen Punkte des Einheitskreises vor und vergleiche sie mit dem Ausgangspunkt. Beachte dabei evtl. Symmetrien und Vorzeichen.
  • Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

    cos(α) = x und sin(α) = y

    Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
TIPP Beispiel-Aufgabe: Zu diesem Aufgabentyp gibt es eine passende Beispiel-Aufgabe. Klicke dazu auf "Hilfe zu diesem Aufgabentyp" unterhalb der Aufgabe.

Entscheide anhand des Einheitskreises, ob Gleichheit vorliegt. Evtl stimmen auch alle oder gar keine Option(en).

  • sin
    75°
    =
     
    sin
    75°
     
    sin
    105°
     
    sin
    255°
     
    sin
    195°
    graphik
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Sinus und Kosinus am Einheitskreis und als Funktion
Lernvideo

Sinus und Kosinus am Einheitskreis und als Funktion

Kanal: Mathegym

Wie wird ein Winkel von 90° in Bogenmaß umgerechnet und wie kann man sich das Bogenmaß vorstellen?
#455
Jeder Winkel kann in Grad angegeben werden (z.B. 90° für den rechten Winkel) oder im Bogenmaß (π/2).

Man muss sich das so vorstellen: Sticht man in den Scheitel des 90°-Winkels ein und zeichnet einen Kreis mit Radius 1, so ist der Bogen zwischen den beiden Schenkeln genau π/2 lang.

Umrechnung zwischen Grad- und Bogenmaß mittels Dreisatz, ausgehend von

180° (Grad)    entspricht    π (Bogenmaß)

Beispiel 1
Wandle 230° ins Bogenmaß um.
Beispiel 2
Drücke die Winkel π/11 und 5 (Bogenmaß) jeweils in Grad aus.
Wie sind Sinus und Kosinus am Einheitskreis definiert?
#333
Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

cos(α) = x und sin(α) = y

Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
Beispiel 1
Ermittle anhand des Einheitskreises:
sin
 
450°
=
?
cos
 
360°
=
?
Beispiel 2
Mit welchen der folgenden vier Werte stimmt 
cos
31°
 überein? Entscheide anhand des Einheitskreises.
cos
31°
   
cos
149°
   
cos
211°
   
cos
121°
Wie beeinflusst die Spiegelung eines Punktes P auf dem Einheitskreis an der x-Achse, y-Achse oder am Ursprung die Sinus- und Kosinuswerte?
#334

Sei P der Punkt des Einheitskreises, der dem Winkel α zugeordnet ist.

Winkel Spiegelung von P Vorzeichenänderung Formeln
−α bzw.
360° − α
an der x-Achse nur sin sin(α) = − sin(360° − α)
cos(α) = cos(360° − α)
180° − α an der y-Achse nur cos sin(α) = sin(180° − α)
cos(α) = − cos(180° − α)
α ± 180° am Ursprung sin und cos sin(α) = − sin(α ± 180°)
cos(α) = − cos(α ± 180°)
α ± 360° P verändert sich nicht sin(α) = sin(α ± 360°)
cos(α) = cos(α ± 360°)
Beispiel 1
Gib alle Lösungen im Intervall [0°;360°] an.
sin
x
=
0,7
Beispiel 2
Führe sin(139°) auf einen Winkel im Intervall [180° ; 270°] zurück.
Beispiel 3
Führe cos(2314°) auf einen Winkel zwischen 0° und 90° zurück:
Welche sind die Sinus- und Kosinuswerte der Winkel 0°, 30°, 45°, 60° und 90°?
#1101
Folgende Sinus- und Kosinuswerte sollte man (wie Vokabeln) auswendig lernen:
  • sin(0°)=0
  • sin(30°)=0,5
  • sin(45°)=0,5√2
  • sin(60°)=0,5√3
  • sin(90°)=1

Die Kosinuswerte sind dazu spiegelbildlich: cos(0°)=1, ..., cos(90°)=0

Merkhilfe: die Werte von oben nach unten ergeben sich, indem man 0,5 mit √0, √1 usw. multipliziert.

Beispiel
sin x
=
1
2
 
2
Bestimme alle Lösungen im Intervall 
π
 
 
x
 
 
π.