Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    Das arithmetische Mittel (meist nur "Mittelwert" genannt) mehrerer Größen erhält man, indem man die Summe aller Größen durch deren Anzahl teilt.

Bestimme den Mittelwert der Zahlen (ohne Taschenrechner).

101
 
   
 
43
 
   
 
27
 
   
 
39
 
   
 
96
m
=
  • Nebenrechnung

Das arithmetische Mittel (meist nur "Mittelwert" genannt) mehrerer Größen erhält man, indem man die Summe aller Größen durch deren Anzahl teilt.
Die Grundgleichung der Prozentrechnung lautet:

PS · GW = PW

PS = Prozentsatz
GW = Grundwert
PW = Prozentwert

Beispiel
Überlege jeweils zuvor, ob Prozentwert, Prozentsatz oder Grundwert gefragt sind und löse dann:

(a) Ein Videospiel wurde von ursprünglich 19,90 € um 30% reduziert . Wie viel kostet es jetzt?

(b) Eine Gruppe setzt sich aus 15 Deutschen und 25 Franzosen zusammen. Wie viel Prozent der Gruppenmitglieder sind Deutsche?

(c) In einem reichen Vorort Münchens sind angeblich 22% aller Einwohner Millionäre. Wie viele Einwohner hat der Ort insgesamt, wenn dort 2431 Millionäre leben?

Achte darauf, ob der Prozentsatz die Differenz zwischen zwei Größen ausdrückt oder ob es darum geht, wie groß die eine Größe im Vergleich zur anderen ist. Eine Differenz ist z.B. bei folgenden Formulierungen gemeint:
  • "um 30% gestiegen"; der neue Wert beträgt dann 130% (= 100% + 30%) gegenüber dem alten, ist also 1,3 mal so groß
  • "Abnahme um 20%"; der neue Wert beträgt dann 80% (= 100% − 20%) gegenüber dem alten, ist also 0,8 mal so groß
  • "15% mehr als"; der größere Wert beträgt dann 115% gegenüber dem kleineren, ist also 1,15 mal so groß
Achte bei mehrschrittigen Rechnungen darauf, dass sich evtl. der Grundwert verändert hat. Vergrößert man z.B. einen Wert um 10% und verkleinert den neuen anschließend wieder um 10%, so kommt NICHT wieder der Anfangswert heraus, da der Grundwert bei der ersten Erhöhung ein anderer war als bei der zweiten Erhöhung.
Beispiel
Ein Mathelehrer schlägt seinem Sohn Juri vor: "Bist du damit einverstanden, dass sich dein Taschengeld ausnahmsweise für einen Monat um 100% erhöht - danach würde ich es aber wieder um 100% reduzieren?" Der Sohn willigt ein und freut sich auf die Extraportion Taschengeld. Worin liegt sein Denkfehler?

Verschiedene Mittelwerte:

Arithmetisches Mittel:

  • Addiere alle Daten und dividiere die erhaltene Summe durch die Anzahl der Daten.
  • Dies ist der gängigste Mittelwert.
  • Beispiel: Notendurchschnitt berechnen.

Median (Zentralwert):

  • Sortiere alle Daten der Größe nach und ermittle dann den Wert in der Mitte der Liste. Am einfachsten streicht man dazu gleichzeitig den ersten und letzten, dann den zweiten und vorletzten, ... Wert der Liste durch, bis der mittlere Wert übrig bleibt.
  • Bei einer geraden Anzahl von Daten bleiben zwei Werte in der Mitte übrig. Der Median ist in diesem Fall das arithmetische Mittel dieser beiden Zentralwerte.
  • Der Median wird durch einen Ausreißer-Wert nicht beeinflusst, im Gegensatz zum arithmetischen Mittel. Darum wird er z.B. für die Ermittlung des Durchschnittseinkommens verwendet. Andernfalls würden wenige Superreiche das Bild verzerren.

Modalwert:

  • Ermittle den Wert in der Datenmenge, der am häufigsten vorkommt.
  • Beispiel: Ein Schuhgeschäft sollte die am häufigsten gebrauchte Schuhgröße (Modalwert) besonders oft vorrätig haben und nicht Schuhe in der mittleren (arithmetisches Mittel) Größe aller Menschen.

Beispiel
Daten (z.B. erzielte Noten in den sechs Klassenarbeiten):
2     2     4     3     2     3
Arithmetisches Mittel:
 
?
Median:
 
?
Modalwert:
 
?