Hilfe
  • Allgemeine Hilfe zu diesem Level
    Bringe in die Form   ♦ (x - ♣)² + ♥   (schreibe 0 an der richtigen Stelle).
    • y = x²:
      Normalparabel mit Scheitel S im Ursprung
    • y = (x + 2)²:
      Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
    • y = x² + 2:
      Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
    • y = (x − 1)² + 3:
      Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
    Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.

Gib die Koordinaten des Scheitels an. Evtl. auftretende Brüche sind in der Form "a/b" bzw. "-a/b" anzugeben.

  • y
    =
    2x
    2
    1
    S
     
     
    |
     
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
  • y = x²:
    Normalparabel mit Scheitel S im Ursprung
  • y = (x + 2)²:
    Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
  • y = x² + 2:
    Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
  • y = (x − 1)² + 3:
    Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.
Beispiel
Gib die Koordinaten des Scheitels an.
y
=
3
·
x
+
5
2
Um eine in Scheitelform gegebene Parabel mit der Gleichung y=a·(x−xS)²+yS ohne Wertetabelle zu zeichnen, geht man am besten vom Scheitel S aus nacheinander um 1, 2, 3 usw. Einheiten nach rechts und dabei um a·1², a·2², a·3² usw. Einheiten nach oben (a>0)oder unten (a<0). Somit erhält man den rechten Parabelast. Der linke ergibt sich durch Spiegelung.
Beispiel
Zeichne die Parabel mit der Gleichung 
y
=
1
2
 
x
3
2
+
1
 in ein Koordinatensystem. Benutze dabei weder den Taschenrechner noch eine schriftliche Wertetabelle.
In einer Wertetabelle sind x- und y-Werte einander gegenübergestellt. Die Wertetabelle erhält man, indem man vorgegebene x-Werte in den Funktionsterm einsetzt und so die zugehörigen y-Werte ausrechnet. Die (x|y)-Paare sind Punkte des Grafen.
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Grafen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Grafen, wenn b > f(a)
  • auf dem Grafen, wenn b = f(a)
  • unter dem Grafen, wenn b < f(a)
Beispiel
f: 
y
=
1
2
 
x
2
x
+
8
;        
A
 
5
 
|
 
1
;   
B
 
2
 
|
 
9
;   
C
 
1
 
|
 
6,5
Gib jeweils an, ob der der Punkt über, auf oder unter der Parabel liegt.
Von der Scheitelpunktform
y = a⋅(x - xS) + yS
kommt man durch ausquadrieren bzw. dem Anwenden der binomischen Formeln zur Normalform:
y = a⋅x² + bx + c
Beispiel
Bringe in die Normalform und gib dann die Parameter a, b und c an:
y
=
5
·
x
+
2
2
1

Die durch y = ax² (a≠0) definierte Parabel hat den Scheitel im Ursprung und ist gegenüber der Normalparabel in y-Richtung um das |a|-fache gestreckt (|a|>1) oder gestaucht (|a|<1). Das Vorzeichen von a legt fest, ob die Parabel nach oben (a positiv) oder nach unten (a negativ) geöffnet ist.

Beispiel
Neben der Normalparabel (schwarz) sind drei verschiedene Parabeln mit der Gleichung y = ax² dargestellt. Lies jeweils das Vorzeichen von a ab und gib an, ob |a|>1 oder |a|<1.
graphik
Die Gleichung einer Parabel sei bis auf den Formfaktor a bekannt. Dann lässt sich a bestimmen, indem man einen Punkt des Graphen aus dem Koordinatensystem abliest, ihn in die Parabelgleichung einsetzt und die Gleichung nach a auflöst.
Beispiel
graphik
Durch die Gleichung y = a⋅(x - xS)² + yS (a≠0) ist eine Parabel mit den Scheitelkoordinaten xS und yS gegeben, die gegenüber der Normalparabel mit der Gleichung y = x²
  • nach unten geöffnet ist, falls a negativ ist und
  • evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Beispiel
Abgebildet ist die Parabel mit der Gleichung
y
=
a
·
x
x
S
2
+
y
S
Bestimme a, 
x
S
 und 
y
S
.
graphik