Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Distributivgesetz:

    a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

    (a + b ) : c = a : c + b : c

    Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Multipliziere aus und vereinfache. Evtl. auftretende Brüche/gemischte Zahlen können in der Form "a/b", "-a/b" oder a b/c" angegeben werden.

2
11
·
22
11d
=
  • Nebenrechnung

Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel 1
Multipliziere aus und gib gekürzt an:
2
9
·
3
5
6c
=
?
Beispiel 2
Multipliziere aus und gib gekürzt an:
1
3
·
2a
+
12b
+
3c
=
?
Beispiel 3
Multipliziere aus und gib gekürzt an:
5
3
 
ab
1
3
 
a
2
3b
·
6
5
=
?
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel 1
Multipliziere aus und vereinfache:
2
5
 
uv
2
3
·
15u
2
+
1
uv
Beispiel 2
b
2
3
 
b
·
6a
·
a
30%
+
1
2
 
a
2
·
b
4ab
ab
2
Die Anzahl der Summanden, die sich nach dem Ausmultiplizieren mehrerer Summen ergibt, lässt sich ebenso leicht bestimmen wie die höchsten Variablenpotenzen:
  • Anzahl der Summanden: Nimm von jeder Klammer die Anzahl der Summanden und bilde das Produkt.
  • Höchste Potenz einer Variable: Nimm aus jeder Klammer die höchste Potenz dieser Variable und multipliziere diese Potenzen.
Beispiel
Wie viele Summanden ergeben sich nach dem Ausmultiplizieren und welche höchsten Variablenpotenzen?
x
+
2
y
2
·
2y
5
x
5x
2
+
1
3
·
x
+
1
·
y
3
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel 1
110
z
·
44
=
22
·
5
22
·
2z
=
22
·
5
2z
Beispiel 2
Klammere so aus, dass in der Klammer betragsmäßig möglichst kleine ganze Zahlen stehen:
8
9
 
z
+
4
2
3
Beispiel 3
Gib größtmögliche Zahlen/Potenzen an, die ausgeklammert werden können:
18
 
x
2
y
3
z
+
54
 
x
 
y
2
z
+
27
 
x
4
y
5
Beispiel 4
Klammere so viele Faktoren wie möglich aus:
14a
2
b
3
21ab
2
+
42ab
3
Bei komplexeren Termen hilft meist die folgende Strategie weiter:
  1. Klammern auflösen/ausmultiplizieren
  2. gleichartige Terme durch Addieren/Subtrahieren zusammenfassen
Beispiel
Vereinfache:
3
2
9
 
v
2
3
1
3
·
6
v
·
2
Unterscheide zwischen
  • a · (b · c) = a · b · c   (A-Gesetz)
  • a · (b + c) = a · b + a · c   (D-Gesetz)
Beispiel
Vereinfache:
12,5%
·
s
:
5
4
+
1,8s
·
1
1
2
 
s
+
t
2
3t
·
s
:
6
·
2t
Gleichartige Terme werden addiert und subtrahiert, indem man ihre Vorzahlen addiert und subtrahiert (Distributivgesetz). Bringe dazu zunächst alle Summanden in die Form

"Vorzahl · Variable", also z.B.

  • a · 3 = 3a
  • a · 2 · 4 = a · 8 = 8a
  • a : 2 = ½ a
  • a = 1a
  • -a = -1a
Dabei wird das Kommutativgesetz (z.B. erste Zeile) und das Assoziativgesetz (zweite Zeile erster Schritt) angewendet.
Beispiel 1
Überprüfe auf Äquivalenz:
z
:
7
z
+
7
·
z
+
z
·
2
 
      und      
 
9z
6
14
·
z
·
2
Beispiel 2
Vereinfache:
1
s
:
4
·
5
3s
·
1
2
2