Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Die Wurzel einer positiven Zahl a ist diejenige positive Zahl, die quadriert a ergibt, also

    (√a)2 = a.

    Die Zahl unter der Wurzel nennt man Radikand.

Berechne ohne Taschenrechner.

0,81
=
  • Nebenrechnung

Die Wurzel einer positiven Zahl a ist diejenige positive Zahl, die quadriert a ergibt, also

(√a)2 = a.

Die Zahl unter der Wurzel nennt man Radikand.

Beispiel 1
0,0016
=
16
10000
=
4
100
2
=
4
100
=
0,04
Beispiel 2
3
6
25
=
81
25
=
9
5
2
=
9
5
Nach dem Distributivgesetz können gleiche Wurzeln (bzw. Vielfache davon) addiert und subtrahiert werden:

a√c + b√c = (a + b)√c

Achtung: √a + √b ≠ √(a+b)
Beispiel 1
Fasse zusammen:
2
 
3
3
 
2
+
3
2
 
2
Beispiel 2
Fasse zusammen:
18
3
+
5
 
2
6
 
32
Ein Produkt von Wurzeln lässt sich als Produkt unter einer Wurzel schreiben und umgekehrt. Sofern weder a noch b negativ sind, gilt also

√a · √b = √(a · b)

Unter anderem ermöglicht diese Regel, Wurzeln teilweise zu radizieren. Sofern a nicht negativ ist, kann man den Faktor a² unabhängig vom Faktor b radizieren:

√(a² · b) = √(a²) · √b = a · √b

Beispiel 1
Radiziere teilweise:
720
=
?
Beispiel 2
Vereinfache:
3
 
45
·
18
=
?
Distributivgesetz:

a · (b + c ) = a · b + a · c    ("Klammer ausmultiplizieren")

(a + b ) : c = a : c + b : c

Statt + kann man auch − einsetzen, d.h. das Disriputivgesetz gilt für Summen wie auch für Differenzen, die mit einer Zahl multipliziert oder durch eine Zahl dividiert werden.

Beispiel
Vereinfache:
3
 
32
108
·
5
 
3
6
Beachte beim Rechnen mit Variablen, dass (weil a auch negativ sein könnte)

√(a²) = | a |

Der Betragstrich ist nicht nötig, wenn a < 0 ausgeschlossen werden kann. Ist hingegen bekannt, dass a negativ ist, kann man statt des Betrags auch konkret schreiben

√(a²) = −a

Ob eine Variable unter der Wurzel positiv oder negativ ist, erschließt sich oft indirekt aus der Aufgabenstellung.

Beispiel 1
Gegeben ist der Term
 
x
6
 
.
Welche Werte können für x eingesetzt werden und wie heißt der vereinfachte Term?
Beispiel 2
Vereinfache (x ≠ 0).
3
 
4x
2
y
:
12y
4
Beispiel 3
Vereinfache (a > 0, b > 0):
a
2
+
ab
a
+
b
:
a
+
1

Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

  1. a² + 2ab + b² = (a + b)²
  2. a² − 2ab + b² = (a − b)²
  3. a² − b² = (a + b) (a − b)

In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.