Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
    • y = x²:
      Normalparabel mit Scheitel S im Ursprung
    • y = (x + 2)²:
      Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
    • y = x² + 2:
      Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
    • y = (x − 1)² + 3:
      Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
    Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.

Welche Funktionsgleichung beschreibt den Graph?

graphik
y
=
x
2
+
3
y
=
x
+
3
2
y
=
x
2
3
y
=
x
3
2
  • Nebenrechnung

Lernvideo
Quadratische Funktionen (Teil 1)
Lernvideo
Quadratische Funktionen (Teil 2)
Lernvideo
Quadratische Funktionen (Teil 3)
Lernvideo
Quadratische Funktionen (Teil 4)

  • y = x²:
    Normalparabel mit Scheitel S im Ursprung
  • y = (x + 2)²:
    Um 2 nach links (bei "x − 2" nach rechts) verschobene Normalparabel, also Scheitel S(-2|0)
  • y = x² + 2:
    Um 2 nach oben (bei "x − 2" nach unten) verschobene Normalparabel, also Scheitel S(0|2)
  • y = (x − 1)² + 3:
    Um 1 nach rechts und um 3 nach oben verschobene Normalparabel, also Scheitel S(1|3)
Diese Zusammenhänge gelten auch, wenn ein Faktor vor x² bzw. (...)² steht.
Um zu überprüfen, ob ein Punkt (a|b) über, auf oder unter dem Grafen einer Funktion liegt, setzt man a in den Funktionsterm f(x) ein. Der Punkt liegt
  • über dem Grafen, wenn b > f(a)
  • auf dem Grafen, wenn b = f(a)
  • unter dem Grafen, wenn b < f(a)
Beispiel
f
:
 
y
=
1
2
 
x
2
x
+
8
;
 
 
 
 
 
 
 
 
A
 
5
 
|
 
1
;
 
 
 
 
B
 
2
 
|
 
9
;
 
 
 
 
C
 
1
 
|
 
6,5
A liegt    
 
?über
 
   
 
?auf
 
   
 
?unter der Parabel
B liegt    
 
?über
 
   
 
?auf
 
   
 
?unter der Parabel
C liegt    
 
?über
 
   
 
?auf
 
   
 
?unter der Parabel
Eine Parabel mit der Gleichung y = ax² + bx + c (Normalform) und dem Scheitel S(s ; t) lässt sich auch durch die Gleichung y = a (x − s)² + t (Scheitelform) ausdrücken.
Weiß man, dass eine Parabel die x-Achse an den Stellen x1 und x2 schneidet, so kann man ihren Scheitel S leicht bestimmen:
  • xS = (x1 + x2) : 2
    Begründung: xS (also die x-Koordinate des Scheitels) liegt aus Symmetriegründen genau in der Mitte des Intervalls [x1 ; x2]
  • yS = p(xS)
    d.h. die y-Koordinate erhält man durch Einsetzen von xS in den Funktionsterm der Parabel
In einer Wertetabelle sind x- und y-Werte einander gegenübergestellt. Die Wertetabelle erhält man, indem man vorgegebene x-Werte in den Funktionsterm einsetzt und so die zugehörigen y-Werte ausrechnet. Die (x|y)-Paare sind Punkte des Grafen.
Eine Gleichung kann graphisch gelöst werden, indem man beide Seiten der Gleichung als Funktionsterm betrachtet und die zugehörigen Graphen zeichnet. Die Stellen, wo sie sich schneiden bzw. berühren, sind die Lösungen der Gleichung. Keine gemeinsamen Punkte dagegen heißt keine Lösung.
Beispiel
Löse graphisch:
0,5x
2
1
=
1,5x
2

Die durch y = ax² (a≠0) definierte Parabel hat den Scheitel im Ursprung und ist gegenüber der Normalparabel in y-Richtung um das |a|-fache gestreckt (|a|>1) oder gestaucht (|a|<1). Das Vorzeichen von a legt fest, ob die Parabel nach oben (a positiv) oder nach unten (a negativ) geöffnet ist.

Beispiel
Neben der Normalparabel (schwarz) sind drei verschiedene Parabeln mit der Gleichung y = ax² dargestellt. Lies jeweils das Vorzeichen von a ab und gib an, ob |a|>1 oder |a|<1.
graphik
Man unterscheidet bei einer Parabel zwischen
  • Normalform   y = ax² + bx + c   ⇒ Ablesen des Schnittpunkts mit der y-Achse (0;c)
  • Scheitelform   y = a (x + d)² + e   ⇒ Ablesen des Scheitels S (-d ; e)

Von der Normalform ausgehend erhält man die Scheitelform mithilfe der quadratischen Ergänzung.

Beispiel
Bringe   
 
y
=
1
4
 
x
2
2x
+
1
 
   in Scheitelform und gib den Scheitel an.
Den Formfaktor a ermittelt man, indem man einen Punkt des Graphen aus dem Koordinatensystem abliest, ihn in die Parabelgleichung einsetzt und die Gleichung nach a auflöst.
Beispiel
graphik
Durch die Gleichung y = a (x + d)² + e (a≠0) ist eine Parabel mit Scheitelkoordinaten xS = -d und yS = e gegeben, die gegenüber der Normalparabel mit der Gleichung y = x²
  • nach unten geöffnet ist, falls a negativ ist und
  • evtl. gestreckt (falls |a|>1) bzw. gestaucht (falls |a|<1) ist.
Beispiel
Abgebildet ist die Parabel mit der Gleichung y = a (x + d)² + e. Bestimme a, d und e.
graphik
Eine Parabel lässt sich durch drei geeignete Punkte eindeutig festlegen. Durch das Einsetzen der drei Punkte in die Funktionsgleichung y = ax² + bx + c erhält man ein Gleichungssystem mit den drei Unbekannten a, b und c. Dieses kann mittels Einsetz- oder Subtraktionsverfahren gelöst werden.
Beispiel
Ermittle die Gleichung der Parabel durch folgende Punkte:
A
 
3
;
2
 
,
 
B
 
3
;
8
 
,
 
C
 
1
;
1
1
3