Aufgaben/Videos
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Unser Team
Jobs
Kontakt
Registrieren
Login
Trigonometrie - Funktionen - Mathematikaufgaben
- gemäß Lehrplan für 8.-9. Jgst
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Hilfe
Allgemeine Hilfe zu diesem Level
Beispielaufgabe
+Video
Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:
cos(α) = x und sin(α) = y
Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
Ermittle anhand des Einheitskreises.
sin
0°
=
cos
180°
=
Notizfeld
Notizfeld
Tastatur
Tastatur für Sonderzeichen
+
-
*
:
/
√
^
<
>
!
Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.
Hilfe zu diesem Level
Hilfe zum Aufgabenbereich
Stoff zum Thema (+Video)
Lernvideo
Allgemeine Sinusfunktion
Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:
cos(α) = x und sin(α) = y
Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
Beispiel 1
Ermittle anhand des Einheitskreises:
sin
450°
=
?
cos
360°
=
?
Beispiel 2
Mit welchen der folgenden vier Werte stimmt cos (31°) überein? Entscheide anhand des Einheitskreises.
−
cos
−
31°
cos
149°
−
cos
211°
cos
121°
Sei P der Punkt des Einheitskreises, der dem Winkel α zugeordnet ist.
Winkel
Spiegelung von P
Vozeichenänderung
Formeln
−α bzw.
360° − α
an der x-Achse
nur sin
sin(α) = − sin(360° − α)
cos(α) = cos(360° − α)
180° − α
an der y-Achse
nur cos
sin(α) = sin(180° − α)
cos(α) = − cos(180° − α)
α ± 180°
am Ursprung
sin und cos
sin(α) = − sin(α ± 180°)
cos(α) = − cos(α ± 180°)
α ± 360°
P verändert sich nicht
sin(α) = sin(α ± 360°)
cos(α) = cos(α ± 360°)
Beispiel 1
Führe sin( 139° ) auf einen Winkel im Intervall [180° ; 270°] zurück.
Beispiel 2
Gib alle Lösungen im Intervall [0° ; 360°] an.
sin
x
=
0,7
Durch bestimmte Vorfaktoren lassen sich Amplitude und Periode der normalen Sinuskurve verändern.
Amplitude
beschreibt die Ausprägung in y-Richtung, normalerweise beträgt sie 1. Unter
Periode
versteht man die Länge des Intervalls, indem sich der Graph nicht wiederholt, normalerweise beträgt diese 2π. Gegenüber der normalen Sinuskurve (Kosinus analog) ist der Graph der Funktion
y = a·sin(x) in y-Richtung gestreckt (|a| > 1) bzw. gestaucht (|a| < 1). Ist a negativ, erscheint der Graph zudem an der x-Achse gespiegelt.
y = sin(b·x), b>0, in x-Richtung gestreckt (0 < b < 1) bzw. gestaucht (b > 1). Ihre Periode ergibt sich aus 2π / b.
Beispiel
Der unten abgebildete Graph gehört zu einer Gleichung der Form
y
=
a
·
sin
b
·
x
, wobei a>0 und b>0
Bestimme a und b.
Gegenüber der normalen Sinuskurve (Kosinus analog) ist der Graph der Funktion
y = sin(x + c) in x-Richtung nach rechts (c < 0) bzw. links (c > 0) verschoben.
y = sin(x) + d in y-Richtung nach oben (d > 0) bzw. unten (d < 0) verschoben.
Beispiel
Gib die zum Graph passende Funktionsgleichung an:
y
=
sin
x
−
?
−
?
Der Graph der Funktion y = a·sin[b·(x + c)] ; b>0 entsteht aus der normalen Sinuskurve durch folgende Schritte:
Streckung/Stauchung in x-Richtung; die Periode ergibt sich durch 2π/b, vergößert sich also für b < 1 und verkleinert sich für b > 1
Verschiebung in x-Richtung um |c|; bei negativem Wert nach rechts, ansonsten nach links;
Streckung in y-Richtung mit dem Faktor |a|; zusätzlich Spiegelung an der x-Achse, wenn a negativ ist;
Für den Kosinus gelten die selben Gesetzmäßigkeiten.
Beispiel
f
x
=
cos
b
·
x
+
c
Bestimme passende Parameterwerte b und c
b
>
0 und
−
π
<
c
<
π
, so dass der Funktionsterm zum abgebildeten Graphen passt.
Die Funktion f(x) = a·sin(b·x); b>0 bzw. deren Graph besitzt:
die Amplitude |a|,
die Periode 2π / b
und damit folgende Nullstellen: außer 0 die halbe Periode und alle (positiven wie negativen) Vielfachen davon.
Für den Kosinus gelten bzgl. Amplitude und Periode dieselben Gesetzmäßigkeiten; das Rezept für die Nullstellen lautet hier: Nimm eine viertel Periode und addiere dazu (bzw. ziehe ab) eine halbe Periode (bzw. Vielfache davon).
Titel
×
...
Schließen
Speichern
Abbrechen