Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

    cos(α) = x und sin(α) = y

    Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.

Ermittle anhand des Einheitskreises.

sin
 
=
cos
 
180°
=
 
     
 
graphik
  • Nebenrechnung

Lernvideo
Allgemeine Sinusfunktion

Jedem Winkel α lässt sich auf dem Einheitskreis genau ein Punkt P(x|y) zuordnen. Der Winkel wird dabei von der positiven x-Achse aus entgegen dem Uhrzeigersinn gedreht. Man definiert:

cos(α) = x und sin(α) = y

Sinus- und Kosinuswerte können also als Koordinaten von Punkten des Einheitskreises aufgefasst werden.
Beispiel 1
Ermittle anhand des Einheitskreises:
sin
 
450°
=
?
cos
 
360°
=
?
Beispiel 2
Mit welchen der folgenden vier Werte stimmt   cos (31°)   überein? Entscheide anhand des Einheitskreises.
cos
31°
cos
 
149°
cos
 
211°
cos
 
121°

Sei P der Punkt des Einheitskreises, der dem Winkel α zugeordnet ist.

Winkel Spiegelung von P Vozeichenänderung Formeln
−α bzw.
360° − α
an der x-Achse nur sin sin(α) = − sin(360° − α)
cos(α) = cos(360° − α)
180° − α an der y-Achse nur cos sin(α) = sin(180° − α)
cos(α) = − cos(180° − α)
α ± 180° am Ursprung sin und cos sin(α) = − sin(α ± 180°)
cos(α) = − cos(α ± 180°)
α ± 360° P verändert sich nicht sin(α) = sin(α ± 360°)
cos(α) = cos(α ± 360°)
Beispiel 1
Führe   sin( 139° )   auf einen Winkel im Intervall [180° ; 270°] zurück.
Beispiel 2
Gib alle Lösungen im Intervall [0° ; 360°] an.
sin
x
=
0,7
Durch bestimmte Vorfaktoren lassen sich Amplitude und Periode der normalen Sinuskurve verändern. Amplitude beschreibt die Ausprägung in y-Richtung, normalerweise beträgt sie 1. Unter Periode versteht man die Länge des Intervalls, indem sich der Graph nicht wiederholt, normalerweise beträgt diese 2π. Gegenüber der normalen Sinuskurve (Kosinus analog) ist der Graph der Funktion
  • y = a·sin(x) in y-Richtung gestreckt (|a| > 1) bzw. gestaucht (|a| < 1). Ist a negativ, erscheint der Graph zudem an der x-Achse gespiegelt.
  • y = sin(b·x), b>0, in x-Richtung gestreckt (0 < b < 1) bzw. gestaucht (b > 1). Ihre Periode ergibt sich aus 2π / b.
Gegenüber der normalen Sinuskurve (Kosinus analog) ist der Graph der Funktion
  • y = sin(x + c) in x-Richtung nach rechts (c < 0) bzw. links (c > 0) verschoben.
  • y = sin(x) + d in y-Richtung nach oben (d > 0) bzw. unten (d < 0) verschoben.
Beispiel
Gib die zum Graph passende Funktionsgleichung an:
graphik
 
          
 
y
=
sin
x
?
?
Der Graph der Funktion y = a·sin[b·(x + c)] ; b>0 entsteht aus der normalen Sinuskurve durch folgende Schritte:
  • Streckung in x-Richtung; die Periode ergibt sich durch 2π/b, vergößert sich also für b < 1 und verkleinert sich für b > 1
  • Verschiebung in x-Richtung um |c|; bei negativem Wert nach rechts, ansonsten nach links;
  • Streckung in y-Richtung mit dem Faktor |a|; zusätzlich Spiegelung an der x-Achse, wenn a negativ ist;
Für den Kosinus gelten die selben Gesetzmäßigkeiten.
Die Funktion f(x) = a·sin(b·x); b>0 bzw. deren Graph besitzt:
  • die Amplitude |a|,
  • die Periode 2π / b
  • und damit folgende Nullstellen: außer 0 die halbe Periode und alle (positiven wie negativen) Vielfachen davon.
Für den Kosinus gelten bzgl. Amplitude und Periode dieselben Gesetzmäßigkeiten; das Rezept für die Nullstellen lautet hier: Nimm eine viertel Periode und addiere dazu (bzw. ziehe ab) eine halbe Periode (bzw. Vielfache davon).