Aufgaben/Videos
Mathe nach Lehrplan
Mathe nach Schulbuch
Physik
Latein
Preise
Hilfe
Infos
Infos für Schüler
Infos für Eltern
Infos für Lehrer & Schulen
Teilnehmende Schulen
Auszeichnungen
Erfahrungsberichte
Blog
Unser Team
Kontakt
Registrieren
Login
Geometrie - Thaleskreis/Peripheriewinkelsatz - Matheaufgaben
- Lehrplan Schweiz Kanton St. Gallen, Gymnasium, 9. Klasse
Aufgaben
Aufgaben rechnen
Stoff
Stoff ansehen (+Video)
Du bist nicht angemeldet!
Hast du bereits ein Benutzerkonto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
Hilfe speziell zu dieser Aufgabe
Die Beträge der einzugebenden Zahlen ergeben in der Summe 400.
Allgemeine Hilfe zu diesem Level
Beachte evtl. auftretende Rand- und Mittelpunktswinkel, Nebenwinkel, Scheitelwinkel (= Gegenwinkel), Stufenwinkel (=F-Winkel), Wechselwinkel (=Z-Winkel), Nachbarwinkel (=E-Winkel), Winkelsumme im Dreieck
Bestimme die gefragten Winkelmaße.
Zwischenschritte aktivieren
δ
=
°
η
=
°
γ
=
°
λ
=
°
β
=
°
ρ
=
°
Nebenrechung
√
Leeren
Zugriff ab Level 2 nur mit Benutzerkonto
Erstelle jetzt ein kostenloses Benutzerkonto. Damit hast du bei all unseren Aufgaben kostenlos Zugriff auf den 1. und 2. Level.
Benutzerkonto erstellen
Tipp
Wenn du Mathegym ohne Vollzugang weiter erkunden möchtest, kannst du entweder einen
anderen Aufgabentyp
wählen. Oder ein paar ausgewählte
Schritt-für-Schritt-Aufgaben
lösen, die wir für dich zusammengestellt haben.
Stoff zum Thema (+Video)
Satz des Thales:
Liegen A, B und C auf einem Kreis und geht [AB] durch den Mittelpunkt, so ist das Dreieck ABC bei C rechtwinklig. Man spricht vom "Thaleskreis" über [AB].
Umgekehrt gilt: ist das Dreieck ABC bei C rechtwinklig, so liegt C auf dem Thaleskreis über [AB].
Beispiel 1
Welche der folgenden Dreiecke sind rechtwinklig?
Beispiel 2
Ermittle durch Konstruktion alle Punkte, von denen aus die beiden Strecken a und b unter einem rechten Winkel erscheinen.
Ein Kreis wird durch eine Sehne a in zwei Bögen unterteilt. Man betrachte den größeren der beiden Bögen (falls gleichgroß: einen der beiden Halbkreise):
Von jedem Punkt des sogenannten
Fasskreisbogens
erscheint die Sehne unter demselben Winkel γ (
Randwinkel
oder
Umfangswinkel
).
Vom Kreismittelpunkt aus erscheint die Sehne dagegen unter dem Winkel µ = 2γ, d.h. der
Mittelpunktswinkel
ist immer doppelt so groß wie der Umfangswinkel.
Durch Spiegelung an a erhält man den zweiten Fasskreisbogen (zweites Bild). Das Fasskreisbogenpaar (die Sehnenendpunkte gehören nicht dazu) ist also der geometrische Ort aller Punkte, von denen aus a unter demselben Winkel erscheint.
Im Spezialfall a = Durchmesser (s.o.) ergänzen sich die Fasskreisbögen (Halbkreise) zum Thaleskreis, der Randwinkel beträgt also hier stets 90°.
Titel
×
...
Schließen
Speichern
Abbrechen