Du bist nicht angemeldet!
Hast du bereits ein Benutzer­konto? Dann logge dich ein, bevor du mit Üben beginnst.
Login
Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

    a · b + a · c = a · (b + c)

    (Ebenso mit − statt +)

Klammere optimal aus.

15
5a
=
·
  • Nebenrechnung

Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)

(Ebenso mit − statt +)

Beispiel 1
110
z
·
44
=
22
·
5
22
·
2z
=
22
·
5
2z
Beispiel 2
Gib größtmögliche Zahlen/Potenzen an, die ausgeklammert werden können:
18
 
x
2
y
3
z
+
54
 
x
 
y
2
z
+
27
 
x
4
y
5
Beispiel 3
Klammere so aus, dass in der Klammer betragsmäßig möglichst kleine ganze Zahlen stehen:
8
9
 
z
+
4
2
3
Beispiel 4
 
 
38
·
z
z
·
19
·
x
=
19
·
2
·
z
z
·
19
·
x
=
19
·
z
·
2
19
·
z
·
x
=
19z
·
2
x
Enthält jeder einzelne Summand einer Summe denselben Faktor, so kann man diesen ausklammern, also als Faktor vor die Summenklammer schreiben (Distributivgesetz "rückwärts"):

a · b + a · c = a · (b + c)


Man kann auch ganze Terme, z.B. Summen, ausklammern:

(x+y) · b + (x+y) · c = (x+y) · (b + c)