Hilfe
  • Allgemeine Hilfe zu diesem Level
  • Die drei Binomischen Formeln (BF) lauten:

    1. (a + b)² = a² + 2ab + b²
    2. (a − b)² = a² − 2ab + b²
    3. (a + b) (a − b) = a² − b²
    In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.

Multipliziere mit Hilfe der binomischen Formeln aus. Variablenpotenzen sind in der Form "a^n" einzugeben. [Zahlenpotenzen sind auszurechnen.]

  • 7
    +
    a
    2
    =
    Notizfeld
    Notizfeld
    Tastatur
    Tastatur für Sonderzeichen
    Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen.

Die drei Binomischen Formeln (BF) lauten:

  1. (a + b)² = a² + 2ab + b²
  2. (a − b)² = a² − 2ab + b²
  3. (a + b) (a − b) = a² − b²
In dieser Richtung (links mit Klammer, rechts ohne) dienen die Formeln dazu, Klammern schneller auszumultiplizieren. Ohne Kenntnis der BF müsste man die Klammern auf herkömmlich Art ("jeder mit jedem") ausmultiplizieren.
Beispiel 1
Multipliziere.
a
+
1
2
=
?
3
b
2
=
?
11
+
c
·
11
c
=
?
Beispiel 2
Multipliziere.
3
7
+
y
2
=
?
1,5x
2
3
2
=
?
q
2
+
1
6
·
q
2
1
6
=
?
Beispiel 3
Berechne mithilfe der binomischen Formeln ohne Taschenrechner:
53
2
=
?
29
2
=
?
38
·
42
=
?

Die drei Binomischen Formeln (BF) lauten in der Rückwärtsversion:

  1. a² + 2ab + b² = (a + b)²
  2. a² − 2ab + b² = (a − b)²
  3. a² − b² = (a + b) (a − b)

In dieser Richtung (links ohne Klammer, rechts mit) ermöglichen die Formeln, eine Summe oder Differenz in ein Produkt umzuformen ("faktorisieren"). Hier ist es wichtig, dass man den linken Term erst einmal überprüft: Liegt die passende Struktur für eine BF vor? Eine Probe (andere Richtung) gibt Gewissheit.

Beispiel
Faktorisiere (wenn möglich).
49x
2
4
9
=
?
Beim Multiplizieren zweier Summen muss jeder Summand der ersten Klammer mit jedem Summanden der zweiten Klammer multipliziert werden (ergibt sich aus dem Distributivgesetz):

(a + b) · (c + d) = ac + ad + bc + bd

Beispiel
Ergänze:
20y
+
4y
2
=
2